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Abstract
The task that motivated Atanasoff’s construction of the
first electronic computer has a mathematical legacy go-
ing back thousands of years, and it remains the funda-
mental operation by which computers are measured;
solving systems of linear equations. This is sometimes
misconstrued as a “special purpose” form of computing,
but is actually as general in application as is any basic
block of source code involving the four arithmetic op-
erations +, –, ×, and ÷. Systems built for this function
share many architectural features; 70 years after Atana-
soff conceived the ABC, ClearSpeed is building hard-
ware for the solution of the exact same type of calcula-
tion, but trillions of times faster. The quest for linear
solvers has motivated some of the most important inno-
vations in computing history.

1. Introduction: A 2300-year-old quest

The solution of linear equations has been a primary
goal for computation since the time of the abacus. Some
examples of historical efforts follow.

1.1. 300 BC: Babylonian “word problems”

The following example, from a Babylonian clay tab-
let circa 300 BC, could have come from a modern day
text on beginning algebra:

There are two fields whose total area is 1800
square yards. One produces grain at the rate of 2/3
of a bushel per square yard while the other pro-
duces grain at the rate of 1/2 a bushel per square
yard. If the total yield is 1100 bushels, what is the
size of each field?

That tablet [1] may be the first record we have of the
quest for linear equation solvers.

Those word problems also date from almost exactly
the time of the earliest surviving calculating device [2], a
“counting board” that worked like an abacus but with
gravity holding pebbles in grooves instead of beads held
on wires. The “Salamis Tablet,” circa 300 BC, may well

have been used to solve those early sets of linear equa-
tions.

Figure 1. The Salamis Tablet

By moving pebbles between columns of grooves on
the white marble surface, this device aided accurate ad-
dition and subtraction up to 10,000; in modern terms, it
was a four-decimal calculator. Note the dual registers;
the top one has lower precision, such as might be require
for the result of division operations on integers through
repeated subtraction.

1.2. The Jiuzhang Suanshu: “calculation by
square tables”

By 200 BC, Chinese mathematics rivaled and often
surpassed that of Babylonia. The Jiuzhang Suanshu, or
Nine Chapters on the Mathematical Art, dates from the
Han Dynasty [3], yet includes as Chapter 8 a perfect
description of what we now know as Gaussian elimina-
tion, with 18 examples including one with six equations
in six unknowns! Perhaps “square table” is better trans-
lated as “matrix.” The examples show reduction to trian-
gular form by scaling and subtraction, including the con-
cept of negative numbers as partial results. The examples
used small integers, but a 6 by 6 problem requires over



200 arithmetic operations that probably still took several
hours to perform accurately with the help of an abacus.

1.3. Two millennia pass

From the Chinese achievement to the time of Gauss,
we see only records of 2 by 2 and 3 by 3 systems of
equations, where the solution methods are various ways
of expressing Cramer’s Rule. Cramer’s Rule is elegant
for such small systems, immediately informing the user
if the system is insolvable (by concluding in a division
by zero), but scales as the factorial of the number of
equations. Even to solve a 4 by 4 system exceeds the
patience of most people, particularly since Cramer’s
Rule tends to create many-decimal intermediate results
from simple starting coefficients. It appears that the fun-
damental technique described in the Jiuzhang Suanshu
was lost for almost 2000 years.

1.4. Gauss and the asteroids Ceres and Pallas

In 1801 and 1802, astronomers spotted the first aster-
oids (named “minor planets” at the time). Named Ceres
and Pallas, predicting their orbits obsessed the great
mathematician Carl Friedrich Gauss. In both cases, the
asteroids provided only a few position measurements
before disappearing in the glare of the sun.

Figure 2. The asteroid Pallas

Gauss’ mathematical colleagues watched in horror
[4] as the genius, having made so many breakthroughs in
fundamental mathematics, set abstract theory aside and
threw himself into several years of tedious arithmetic
calculations to test a physical theory about where they
would next be observed. But Gauss, as usual, was right
in his choice of what was and wasn’t important to study.
To solve the problem of predicting the orbit of Pallas, he
had to reduce astronomical data to a least-squares prob-
lem… involving six equations in six unknowns. It was
the first application of the method of least squares, a

cornerstone of statistical analysis he had invented a few
years earlier. It led him to describe the system for solv-
ing linear systems in general that bears his name, simul-
taneously advancing statistics, celestial mechanics, and
numerical methods in far-reaching ways.

1.5. Babbage’s Analytical Engine (1836)

Many of us can recall grand plans for supercomputers
that did not become reality. Often, however, the mere act
of working out the details on paper allows major ad-
vances in technology. Charles Babbage’s ambitious plan
for a mechanical (steam-powered) digital computer was
precise and detailed enough that Ada Lovelace was able
to write programs for the nonexistent system.

One of her first programs was for solution of a sys-
tem of ten linear equations in ten unknowns [6]. She
used a concept of resetting the card containing the in-
struction to perform a repeated operation on a list of
numbers economically; it was the first vector instruction,
invented specifically for the centuries old desire to solve
Ax = b. She was not only the first computer programmer
by 110 years; she was about 150 years ahead of her time
in wanting to use a supercomputer to run LINPACK!
Incidentally, the Analytical engine took two to four min-
utes to do a multiply-add operation, so Ada’s program
would have taken about 60 hours to solve the 10 equa-
tions. She once said the looping effect could "solve a
system of linear equations no matter how big it was” [7].

The committee that reviewed Babbage’s plans for the
machine had this to say [5]:

Another important desideratum to which the ma-
chine might be adapted… is the solution of si-
multaneous equations containing many vari-
ables. This would include a large part of the cal-
culations involved in the method of least
squares… In the absence of a special engine for
the purpose, the solution of large sets of simul-
taneous equations is a most laborious task, and
a very expensive process indeed, when it has to
be paid for, in the cases in which the result is
imperatively needed.

But the machine was not to be. It would be another
century before the first working automatic linear
equation solver.

1.6 The Atanasoff-Berry Computer (ABC)

Atanasoff may have been the first to estimate a general
“LINPACK” rate for a human calculator in his 1940
paper [8]:

It is easy to see that the principal term in the
amount of labor needed to solve a system of



equations is kN3 in which N is the number of un-
knowns and k is a constant. Since an expert [hu-
man] computer requires about eight hours to solve
a full set of eight equations in eight unknowns, k is
about 1/64.

This implies a calculation rate of 0.016 flops/s, or
almost exactly one minute per multiply or add. (We use
“flops” for the plural of “floating-point operation” and
“flops/s” as the abbreviation for the speed measure, to
avoid confusion.) He was probably assuming the use of
10-decimal mechanical calculators such as those made
by Marchant or Monroe to assist the hand calculation;
unaided pencil-and-paper arithmetic is about ten times
slower than this.

By using 30 processors in parallel, the ABC could
claim a peak speed of 30 adds per second with 15-
decimal precision. However, our timings of the use of
the machine to solve linear equations including all hu-
man setup and I/O showed the sustained speed to be
about 0.06 operations per second. This was still four
times faster than doing the calculation manually, higher
precision, and far less error-prone since the ABC re-
corded intermediate results automatically.

Figure 3. ABC diagram
The reason Atanasoff felt linear equations were so

important bears repeating. Here is his list of examples to
which he wanted to apply the kernel operation:

1. Multiple correlation
2. Curve fitting
3. Method of least squares
4. Vibration problems including the vibrational

Raman effect
5. Electrical circuit analysis
6. Analysis of elastic structures

7. Approximate solution of many problems of elas-
ticity

8. Approximate solution of problems of quantum
mechanics

9. Perturbation theories of mechanics, astronomy,
and quantum theory

The first three are paraphrases of statistical fitting prob-
lems for which Iowa State College had a strong applied
statistics presence, and remind us of the reason Gauss
invented those methods. The other items on this list are
even more prescient, reminding us of modern HPC pro-
grams like SPICE, ANSYS, and GAUSSIAN.

2. Is equation solving “special purpose”?

Few terms in computer technology are used as care-
lessly as “special purpose,” (though “real time” is also a
contender.) As commonly used, a “special purpose”
computer is better than we expect at some things, and not
as good as we expect at other things, where the expecta-
tions are set simply by prior experience. The laptop on
which I am typing this is very poorly suited to driving a
car automatically, for example, yet few would call it
“special purpose.”

2.1 Was the ABC a general-purpose computer?

Those who seek to minimize the importance of the
ABC often label it “special purpose.” This attitude shows
a misunderstanding of how general the power of linear
solver hardware is.

In solving a simple system of two equations in two
unknowns on the ABC replica, we noticed that the ma-
chine produced the result d – bc⁄a in the lower right stor-
age location, just as someone solving the system by hand
would produce it. However, that meant that the ABC was
a complete four-function calculator! Specifically:

Table 1. Coefficients that yield basic operations
To compute a b c d

X + Y 1 Y –1 X
X – Y 1 Y 1 X
X × Y 1 X Y 0
X ÷ Y Y X –1 0

There is a bit of this idea in some instruction sets that
use the “fused multiply-add” instruction. This computes
p = q + r × s in hardware, but if all you want is an addi-
tion or a multiplication, you simply use it with r=0 or
q=1 drawn from dedicated registers containing those
values.

We can easily extend this idea by considering the
solution of n equations in n unknowns as a template into
which we may embed any sequence of arithmetic opera-



tions. For example, suppose we wish to compute the first
few terms of the Taylor series for ex:
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The ABC (or any other Gaussian elimination hardware)
computes this if we simply set up a 3 by 3 matrix as
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and solve for upper triangular form, The f(x) value ap-
pears in the lower right-hand corner.

2.2. Was ENIAC a “special purpose” computer?

Embedding arithmetic sequences into a linear solve
may seem like a strange way to “program” a function,
but the system for other computers that followed the
ABC were scarcely less strange. The ENIAC was “pro-
grammed” by removing and re-attaching wires between
functional units, and then manually setting three thou-
sand switches on the function tables [9]. Whereas the
computation of ballistic tables took a single person
twenty hours to do with a hand calculator, the ENIAC
required a team of six operator-programmers and about
seventy hours, if you include the time to set up the com-
puter for that problem.

The ENIAC did time-stepped systems of ordinary
differential equations with three unknowns. It would not
have been difficult to perform the same calculations with
the ABC by the method described in §2,1. Oddly
enough, even with 18,000 vacuum tubes, the ENIAC
could only hold 20 10-digit numbers, fewer than the
ABC’s 30 15-digit numbers. We have no record of the
ENIAC ever having been programmed to solve a system
of linear equations, despite von Neumann’s intense in-
terest in using this kernel to solve fluid dynamics prob-
lems. Since the process of changing the ENIAC circuitry
and switches was extremely expensive and error-prone,
the machine was usually left in a single dataflow pattern
for many months. Once again, we see that the terms
“special purpose” and “general purpose” are often ap-
plied thoughtlessly. By any definition that takes into
account the human effort needed to change the purpose
of a machine, the ENIAC was very special-purpose,
certainly more so than the ABC.

2.3 Linear solvers and the ACRITH package

The generality of linear equation solvers is the basis
for IBM’s ACRITH and Pascal-XSC for very high-
precision arithmetic. The concept, due to Kulisch [10], as

to convert a basic block of operations to a linear system
of equations, which is solved using an extended-
precision accumulator.  Since square roots, trigonometric
functions, etc, all break down to the four fundamental
arithmetic operations within library routines (or low-
level hardware), the only remaining computing element
is the management of control flow (branching, subrou-
tine calls) and input/output.

This modern tool for precise computation, commer-
cialized as PASCAL-XSC and ACRITH programming
environments, illustrates both the power and generality
of linear equations for solving a wide range of problems.

3. The rise of LINPACK and the TOP500

Fast computers immediately raised serious concerns
about solving large linear system with floating-point
arithmetic that rounded results. Both Hotelling and
Turning independently concluded that the rounding er-
rors would grow exponentially with the number of equa-
tions [11]. By 1961, the concerns were put to rest by
Wilkinson, who proved the adequacy of Gaussian elimi-
nation if one performs is careful to choose the sequence
of rows used to eliminate the other rows. This choice,
“pivoting,” removed one of the two obvious hurdles in
the quest for large linear solvers. (Wilkinson had partici-
pated in the creation of the ACE computer, intended for
the solution of 18 equations in 18 unknowns.)

The other hurdle, of course, was speed. Then as now,
users had no trouble conceiving of problems far larger
than they could solve in practical amounts of time. Since
the computers of the 1950s took far longer to do a high-
precision multiply and add than just about any other op-
eration, the numerical analysis community measured the
difficulty of a task by how many “flops” it required.

Building on Wilkinson’s work, Dongarra et al. [11]
created a project to create high-quality software for lin-
ear algebra, and then disseminate it free of charge. It
probably was the first “open source” project, and it
revolutionized the way programmers developed and dis-
tributed essential algorithms to the computing commu-
nity. As an unassuming note near the end of the 1970s
“LINPACK Users Guide” the authors give examples of
the speeds of a few commercially-available systems us-
ing the software, and an invitation to send other speed
measurements to Dongarra. Thus began the best-known
and longest-lasting benchmark in computer history.

The original LINPACK benchmark problem was for
100 unknowns. As computers got faster, Dongarra intro-
duced a 300 by 300 problem, which by requiring almost
30 times as much arithmetic to solve, took care of
Moore’s law improvements for a few years. Even this
began to look too small, so Dongarra added a 1000-
equation case as a separate benchmark. Around 1984, I
suggested to Dongarra that he permit the problem to



scale, allowing any linear system size and then ranking
simply on the achieved flops/s. And, by defining the
problem as “Solve a system of equations with Gaussian
elimination using partial pivoting,” the problem need not
be tied to any particular source code or presumed archi-
tecture. Dongarra adopted these ideas in a separate list,
“Toward Peak Performance,” and soon had hundreds of
entries. Vendors struggled to achieve a high ranking on
the list, to the point of making architectural choices
based on how it might improve their rank.

Though created as a mathematical library, the use of
LINPACK as a benchmark had become an institution. It
was codified at the TOP500 list (www.top500.org) in the
early 1990s and remains the way we track the progress
of computer technology.

4. Modern Architectures for Linear Solvers

A “sea change” occurred in computer architectures
not long after the LINPACK library was introduced:
flops were becoming cheaper and faster than memory
references. This is counterintuitive to us, and still sur-
prising to many, because a human can write down a 15-
decimal arithmetic problem in just a few seconds that
will take at least ten minutes to solve with pencil and
paper methods. Around 1975–1977, computers started
taking almost exactly the same time to perform a 64-bit
multiply-add as they did to fetch and store the operands.
Yet, the tendency to measure computational “work” by
counting the flops persists to this day in many circles.

Once VLSI technology advanced to the point of put-
ting a full 64-bit floating-point multiplier and adder on
one chip, it was only a matter of time before a company
built a platform that exploited the fact that linear equa-
tion solving does far more arithmetic than fetching and
storing.

4.1 The FPS-164/MAX

By 1984, dense linear solvers had shown their im-
portance particularly in three major areas: radar simula-
tion, structural analysis, and computational chemistry.
Other fields, such as analog circuit simulation (SPICE),
used linear systems that were so sparse that they had
closer to one-to-one ratio of arithmetic to communica-
tion, but the dense problems had an attractive feature:
order N3 arithmetic but only order N2 data motion. At
FPS, we set out to build a system that was stunningly
faster (341 Mflops/s) than anything but the largest Cray
mainframe, by exploiting the new rules of architectural
balance that VLSI floating-point math had made possible
[13].

Figure 4. The FPS-164/MAX accelerators
We were not aware of the ABC or its architecture.

Only after the product was designed and shipping did a
colleague, Edward Borasky, point out a paper by one J.
V. Atanasoff, dated 1940. We, too, had elected to use 30
multiply-add units in parallel under a single stream of
instruction control, 15-decimal precision, and many
other features that Atanasoff had chosen 44 years earlier.
We were astonished by how far ahead of his time his
design was.

4.2 The ClearSpeed CSX600

Figure 5. The ClearSpeed accelerator

In early 2005, ClearSpeed Technology presented me
a striking piece of technology: A chip capable of sus-
taining about 25 Gflops/s, while consuming less than 10
watts. And it did best on algorithms that perform a very
high ratio of arithmetic to memory transfers. It was par-
ticularly good at matrix-matrix multiplication, for exam-



ple, just like the FPS-164/MAX had been, and like the
FPS system, that capability was applied immediately to
the solution of large systems of linear equations.

The ClearSpeed designers had never heard of the
ABC, nor did they know about the FPS-164/MAX, yet
they had followed in the footsteps of both computers.
The ClearSpeed CSX600 chip had 96 multiplier-adder
units under a single stream of instruction control.

I have been very fortunate to work on the ABC, the
FPS-164/MAX, and the ClearSpeed CSX600… three
architectures that have all recognized the importance of
linear solvers, spanning over six decades of technology
advances. The ClearSpeed board is approximately a tril-
lion times faster than the ABC, yet is often used to per-
form the exact same task with the same number of deci-
mals of precision, allowing us that direct speed compari-
son. While Moore’s law was a statement about density
and price improvements in large-scale integration, it is
often cited as an estimate for speed improvement as well.
We can even compute the “Moore’s law” for the 65-year
time of introduction of the two devices (1940 and 2005)
at 53% per year. The usual guideline of “doubles every
18 months” works out to 59% per year.

5 The New Challenges for Linear Solvers

At the time of this writing, about a dozen institutions
are striving to build supercomputer clusters capable of
delivering over 1.0 Pflops/s at LINPACK. The obstacles
that now come into the foreground are power consump-
tion (and heat removal), reliability of such massive
amounts of hardware, and coordination of operating
systems to avoid “OS jitter” that interferes with smooth
parallel computation. The ClearSpeed product, in par-
ticular, was designed to solve the power consumption
problem for supercomputing. It appears that the next
generation of top-end systems will use “hybrid” com-
puting methods like ClearSpeed that use coprocessors so
that each type of computing task runs on the hardware
best suited for that function.

The efforts to solve these problems for large
LINPACK runs cause technical advances that then bene-
fit every application for which the system is used.

6 Conclusions

For over 2000 years, there has been a remarkable
common thread through advances in computing technol-
ogy: The quest for linear equation solvers. We see

• The invention of matrices and Gaussian elimination
• Vector arithmetic hardware
• The first electronic digital computer
• Seminal and enabling works in numerical analysis
• The first open-source computing project

• An international standard for ranking computers
as having been motivated by this ancient challenge.

The legacy continues to this day as vendors and cus-
tomers struggle for every faster results on the TOP500,
not because they need to solve gigantic systems of linear
equations as part of their workload but because the task
it represents is so fundamental to what people have al-
ways sought from automatic computing devices.

If you can solve a system of linear equations on a
modern supercomputer, it means you have solved a lot
more than the equations. It means you have solved the
issues of rounding error, interprocessor communication
bandwidth and latency, reliability, algorithm paralleliza-
tion, precision sufficiency, process synchronization, OS
jitter, management of a many-tiered memory hierarchy,
and lately even issues of power consumption and heat
dissipation. The Atanasoff-Berry Computer certainly
was not “special purpose,” it solved the problem that
remains the primary task of scientific computing. ■
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