
HINT: A New Way To Measure ComputerPerformance
John L. Gustafson and Quinn O. Snell

Ames Laboratory, U.S. DOE, Ames, Iowa  50011-3020
Abstract

The computing community has long faced the problem of scientifically comparing differentcomputers and different algorithms. When architecture, method, precision, or storage capacity isvery different, it is difficult or misleading to compare speeds using the ratio of execution times.We present a practical and fair approach that provides mathematically sound comparison ofcomputational performance even when the algorithm, computer, and precision are changed.HINT removes the need for pseudo-work measures such as “Mflop/s” or “MIPS.” It revealsmemory bandwidth and memory regimes, and runs on any memory size. The scalability of HINTallows it to compare computing as slow as hand calculation to computing as fast as the largestsupercomputers. It ports to every sequential and parallel programming environment with verylittle effort, permitting fair but low-cost comparison of any architecture capable of digital arith-metic.
1. Introduction
From the days of the first digital computers to about the mid-1970s, comparing computer per-formance was not the headache it is now. Most computers presented the user with the appear-ance of the von Neumann model of a single instruction stream and a single memory, and tookmuch longer for floating-point operations than for other operations. Thus, an algorithm withfewer floating-point operations (flop) than another in its sequential description could be safelyassumed to run in less time on a given computer. It also meant that a computer with a higherrated capability of flop/s would almost certainly run a given (same size) algorithm in less time.The model wasn’t linear (halving the operations or doubling the nominal computer flop/s didn’texactly halve the execution time), but at least it made predictions that were usually in the rightdirection.
It doesn’t work anymore. Most algorithms do more data motion than arithmetic, and mostcurrent computers are limited by their ability to move data, not to do arithmetic. While therehas been much hand-wringing over misreporting of performance results [3], there has not beena constructive proposal of what should be done instead. Scientists and engineers express sur-prise and frustration at the increasing rift between nominal speed (as determined by nominalMIPS or Mflop/s) and actual speed for their applications. Use of memory bandwidth figures inMbytes/s is too simplistic because each memory regime (registers, primary cache, secondarycache, main memory, disk, etc.) has its own size and speed; parallel memories compound theproblem.
1.1 The failure of other “speed” measures
The SPEC benchmark [3, 11] is popular among workstation vendors. It is not an independent



measure; a consortium of vendors determine what is in SPEC and how to report it. SPEC doesnot scale, and runs on a narrow range of computers at any given time. It has had to be revisedonce, as the first version proved too small for workstations after a few years of technologicalprogress. SPEC claims to be the geometric ratio of the time reduction of various kernels andapplications to the time required by a VAX–11/780. Unfortunately, the VAX–11/780 currentlygets a SPECmark of about 3, indicating it is three times as fast as itself! SPEC survives largelybecause of the lack of credible alternatives.
The PERFECT Benchmark suite [3], introduced in the 1980s, has over 100,000 lines of semi-standard Fortran 77 intended to predict application performance by timing sample scientificapplications. It has faded almost completely out of sight because it makes benchmarking moredifficult than converting the target application and running it. PERFECT benchmark figures areonly available for a handful of computer systems.
Snelling [3] has explained how traditional measures of scientific computer performance havelittle resemblance to measures we use in every other field of human endeavor. Scientists used tothe hard currency of “meters per second” or “reaction rate” are at a loss when they attempt ascientific paper on the performance of their computing method. The only well-defined thing theycan measure is time, so they fix the problem being run and measure the run time for variousnumbers of processors or different types of computers. We agree that speed is work divided bytime, but without a rigorous definition of “work,” the approach has been to try to keep the work“constant” by fixing the program and using relative speeds. Dividing one speed by another can-cels the numerator and leaves a ratio of times, avoiding the need to define “work.”
Fixing the program is fallacious, however, since increased performance is used to attack largerproblems or reach better quality answers. Whatever the time users are willing to wait, they willscale the job asked of the computer to fit that time. Contrary to the “speedup” studies done inmany papers on parallel processing, one does not purchase a thousand-processor system to do thesame job as a one-processor system but in one thousandth the time.
We are therefore faced with having to define a numerator for “computational speed.” In the past,“Logical Inferences Per Second” has been proposed for artificial intelligence, but there is no suchthing as a unit standard logical inference. “VAX unit of performance” has been used by those whowould make a popular minicomputer from 1977 a baseline for comparison, but as the SPECmarkshows, that standard can vary by at least a factor of three for a variety of reasons. What aboutMflop/s? There is no standard “floating-point operation,” since different computers expend differ-ent relative effort for square roots, absolute values, exponentiation, etc. with varying mantissalengths and varying amounts of error trapping… even within the IEEE Floating Point Standard.Mflop/s numbers do not measure how much progress was made on a computation; they onlymeasure what was done, useful or otherwise. It is analogous to measuring the speed of a humanrunner by counting footsteps per second, ignoring whether those footsteps covered any distancetoward the goal.
If one reads advertising for personal computers, one sees “MHz” as the universal indicator ofspeed. Buyers have been led to believe that a 66 MHz computer is always faster than a 40 MHzcomputer, even if the memory and hard disk speed are such that the 66 MHz computer does farless in every clock cycle than the 40 MHz machine. This is like a car advertisement noting onlythe largest number that appears on the speedometer, and asking the buyer to infer proportionalnet performance.



Is there any hope, then, for a definition of computational “work”? We feel there is, if one definesthe quality of an answer. In Section 2, we define Quality Improvement Per Second (QUIPS) as anexample of a measure based rigorously on progress toward solving a problem.
1.2. The precedent of SLALOM
SLALOM [5] was the first benchmark to attempt use of answer quality as the figure of merit. Itfixed the time for a radiosity calculation at one minute, and asked how accurately the answercould be calculated in that time. Thus, any algorithm and any architecture could be used, andprecision was specified only for the answer file, not for the means of calculating. SLALOM wasquickly embraced by the vendor community [6], because for the first time a comparison methodscaled the problem to the power available and permitted each computer to show its application-solving capability. However, SLALOM had some defects:

1. The answer quality measure was simply “patches,” the number of areas into which thegeometry is subdivided; this measures discretization error only roughly, and ignoresroundoff error and solution convergence.
2. The complexity of SLALOM was initially order N3, where N is the number of patches.Published algorithmic advances reduced this to order N2, but it is still not possible to saythat a computer that does 2N patches in one minute is “twice as powerful” as one thatdoes N patches in one minute. An order N log N method has been found that does much toalleviate the problem, but it leads to Defect 3:
3. Benchmarks trade ease-of-use with fidelity to real-world problems. Ease-of-use for abenchmark, especially one intended for parallel computers, tends to decrease with lines ofcode in a serial version of the program. SLALOM started with 1000 lines of Fortran or C,but expanded with better algorithms to about 8000 lines. Parallelizing the latest N log Nalgorithm has proved expensive; a graduate student took a year to convert it to a distributed memory system, and only got twice the performance of our best workstation. To beuseful, a benchmark should be very easy to convert to any computer. Otherwise, oneshould simply convert the target application and ignore “benchmarks.”
4. SLALOM was unrealistically forgiving of machines with inadequate memory bandwidth,especially in its original LINPACK-like form. While this made it popular with computercompanies that had optimized their architectures to matrix-matrix operations, it reducedits correlation with mainstream scientific computing, and hence its predictive value.
5. While SLALOM had storage demands that scaled with the computer speed, it failed to runfor the required one minute on computers with insufficient memory relative to arithmeticspeed. Conversely, computers with capacious memory could not exercise it using SLALOM. Yet memory size is critical to application “performance” in the sense of what one isable to compute, if not in the sense of speed.

2. The HINT benchmark
2.1 Definition and example
Except for SLALOM and the TPC/A and TPC/B database benchmarks [3], extant benchmarksare based on the idea of measuring the time various computers take to complete a fixed-size task.



The SLALOM benchmark fixes the time at one minute and uses the job size as the figure ofmerit. The TPC benchmarks scale similarly to the power available, measuring transactions persecond for a database that grows depending on the speed of the system being measured.The HINT benchmark is based on a fundamentally different concept. HINT stands for Hierar-chical INTegration. It produces a speed measure we call QUIPS, for Quality Improvement PerSecond. HINT fixes neither time nor problem size. Here is an English description of the taskmeasured by HINT:
Use interval subdivision to find rational bounds on the area in the xy plane for which x rangesfrom 0 to 1 and y ranges from 0 to            . Subdivide x and y ranges into an integer power of twoequal subintervals and count the squares thus defined that are completely inside the area(lower bound) or completely contain the area (upper bound). Use the knowledge that thefunction         is monotone decreasing, so the upper bound comes from the left function valueand the lower bound from the right function value on any subinterval. No other knowledgeabout the function may be used. The objective is to obtain the highest quality answer in theleast time, for as large a range of times as possible.
Quality is the reciprocal of the difference between the upper and lower bounds. Timing beginson entry to the program that performs the task; quality increases as a step function of timewhenever an improvement to answer quality is computed. Maintain a queue of intervals inmemory to split, and try to split the intervals in order of largest removable error. The amountof error removable by further subdivision must be calculated exactly whenever an interval issubdivided. Sort the resulting smaller errors into the last two entries in the queue. The subdi-visions may be batched or selected less carefully, for example, if doing so assists vectorizationor parallelism… but doing so will trade against added latency and decreased quality for thesame number of operations.

It can be shown that the function         makes a hierarchical integration method linear in itsquality improvement, because the function on 0 ≤ x ≤ 1 is self-similar to that on 1 ≤ x ≤ 3 afterscaling. The proof is omitted here to save space. Most functions only approximate linear qualityimprovement. The area to bound is shown in Fig. 1.

Fig. 1. Area to be bounded by HINT
At this point the reader may wonder at the fuss made over an integration. Why use hierarchicalrefinement with rigorous rational bounds instead of Gaussian quadrature, or at least Simpson’s
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rule, with ordinary floating-point variables? First, we are trying to capture characteristics ofmany applications that use adaptive methods, including Barnes-Hut or Greengard algorithms forn-body dynamics, Quasi-Monte Carlo, and integral equations like those used for radiosity. Thosemethods find the largest contributor to the error and refine the model locally to improve answerquality. Second, benchmarks (and well-written applications) must have mathematically soundresults. HINT, as defined above, has both characteristics in a concise form.
This task adjusts to the precision available, and has unlimited scalability: By this we mean thatthere is no mathematical upper limit to the quality that can be calculated, only a limit imposedby the particular computer hardware used (precision, memory, and speed). The lower limit isextremely low; about 40 operations yield a quality of about 2.0. A human can get that far in a fewseconds. The quality attained is order N for order N storage and order N operations, so the scal-ing is linear.
Maintenance of a queue of errors needs little pointer management. A simple one-dimensionaldata structure holds a pointer to the beginning (which should be the largest error) and the end(where new error information is placed). The program for HINT is available by Internet (see lastsection) for readers interested in specific details.
We illustrate by showing an ultra-low-precision HINT computation with eight-bit data. For agiven word size of bd bits, the x and y axis will be represented by [bd /2] and bd – [bd /2] size quan-tities. For example, an eight-bit byte conveniently represents values from 0 to 255, so it couldrepresent a grid 16 by 16 on which the graph of the function is superimposed. The programavoids the need to represent the overflow value of 256. Two precisions are needed: the precisionof the data used to count units of area above and below the function, and the precision of theindexing of the intervals. The index must have at least enough bits bi to specify any position inthe x or y directions, which means bi ≥ bd – [bd / 2] bits. For eight-bit data, we need only four-bitindexes since there will be at most 16 subintervals.
If nx and ny are the numbers of area units in the x and y directions, and i is the number of thecolumn, then        can be computed as the fraction                  divided by ny without overflow for allwhole numbers i in the open interval (0, nx). Rounding the division in                   up or down
gives upper and lower bounds, respectively. For example, x = 1⁄ 2 is represented by i = 8.
Then                    is 16 • (16 – 8) / (16 + 8) = 128 ⁄ 24.

This last division makes the maximum use of the eight-bit precision, because the numeratortakes all eight bits to express. This is the reason the numerator is scaled by ny. The quotient is 5with remainder 8, so the function is bounded by
5⁄16 < f (1⁄ 2) < 6 ⁄16
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Figure 2.Integration withbyte-precisionnumbers, twosubintervals
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Fig. 2 shows the state of the bounds after subdivision into two intervals. The areas in the upperleft and lower right contain 87 and 47 squares, respectively. One square in each region is due toimprecision and cannot be eliminated by subdivision. To reduce the error, the 87-square regionshould be subdivided. The 47-square error will then move to the front of the queue of subinter-vals to be split.
A key idea of HINT is the use of whole number arithmetic to preserve the associative property.The need for associative arithmetic stems from the way the total error is updated. Whenever asubinterval is split, the error contribution of the parent subinterval is subtracted and the twosmaller child errors added to the total error. This must be done without rounding, or elseroundoff would accumulate as HINT runs.
For floating-point arithmetic, it is not generally true that (a + b) + c = a + (b + c). However, mostmachines can guarantee that this equality is true if the sum and intermediate sums are allwhole numbers within the mantissa range. For example, 32-bit IEEE floating-point arithmeticeffectively has 24 bits of mantissa. It can express the whole numbers

0, 1, 2, …, 16777214, 16777215
exactly, much as 2’s complement arithmetic can for an unsigned 24-bit integer. By restricting thecomputations in HINT to whole numbers, we can make use of any hardware for fast floating-point arithmetic. It is quite possible for the floating point hardware to be faster than the integerhardware, especially for multiplication. Yet, the same problem can be run with either type. Bywriting the kernel of HINT in ANSI C with extensive type declaration in the source text (includ-ing type casting every integer that appears explicitly), we need only change the preprocessorvariable DSIZE from float  to long  to run HINT for the two data types! We are not aware ofthis degree of portability having been achieved in other programs. Fig. 3 shows four splittings,with steady improvement in the quality of the integral.

Fig. 3. Sequence of hierarchical refinement of integral bounds
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By tracking the total error in this manner, a scalar can record the total error at any time withoutrequiring an order N traversal of the tree. The control structure of HINT is explicitly order N forN iterations, and HINT makes steady progress to quality that is order N. Thus, a computer withtwice the QUIPS rating can be thought of as “twice as powerful”; it must have more arithmeticspeed, precision, storage, and bandwidth to reach that rating.
If there were no loss of precision, with each function value exactly representable on the com-puter, the Quality would always equal the number of the partition. The decision about whichsubinterval to split next takes into account the squares lost through insufficient precision. Find-ing the error that can be removed is not just a matter of multiplying the width by the differencebetween upper and lower bounds and then subtracting the two corners. When the width becomesone square or the upper and lower bounds differ by less than two squares, nothing is gained byrefinement. This exception is easily handled by computing with boolean variables and need notinvolve explicit conditional branches that often degrade performance. Ultimately, there is noerror left that can be eliminated by subdividing intervals. The HINT run then terminates withan “insufficient precision” condition. Fig. 4 shows the limit of an 8-bit precision computation.

Fig. 4. Precision-limited last iteration, 8-bit data
2.2 Memory and operation requirements
While it is possible to do integration with little more memory than an accumulator and a fewworking registers, the goal of steady progress toward improved quality means we must computeand store a record of each upper-lower bounding rectangle. The main data structure of HINT isthe record describing a subinterval. It contains the left and right x values xl and xr, the upper andlower bounds on the function of those values, the number of units in the upper and lower bounds,and the width of the interval (to avoid recomputation).
If bd is the number of bits required for a data quantity and bi is the number of bits required foran index, then the storage required for n iterations is (9bd + 4bi)n bits. Similar measures applyfor non-binary computers; simply replace “bits” with digits in whatever number base is used. Forexample, a vintage 1978 minicomputer with 4-byte floating-point data and 2-byte indexing wouldtake (9 x 4 + 4 x 2)n = 44n bytes for the data. [Program storage varies widely, but HINT is notdesigned to exercise the handling of large program executables. Users of programs believed tostress instruction caching should not use HINT as a performance predictor.]
By traditional “flop” counts using methods like those suggested by McMahon [8] (a divide count-ing as four floating-point operations, for example), each HINT iteration takes about 40 opera-tions. This may seem high, but considerable work is expended rigorously computing the poten-
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tially removable error remaining in a subinterval. One is free to elect any data type, so a HINTiteration with 64-bit integers will measure no floating-point operations. Our initial experimentsshow that performance in QUIPS is remarkably similar for different data types on a computer,for comparable execution times; see Section 4.1. The “personality” of a computer is partiallyrevealed by its higher performance using integer or floating-point data. A much higher perfor-mance for integer operations might reflect less hardware emphasis on scientific simulation andmore on functions such as editing and database manipulation (i.e., business versus scientificcomputing).
A compilation of the HINT kernel for a conventional processor revealed the following operationdistribution for indices and data:

Index operations: Data operations:39 adds or subtracts 69 fetches or stores16 fetches or stores 24 adds or subtracts  6 shifts 10 multiplies  3 conditional branches   2 conditional branches  2 multiplies   2 divides
With a memory cost of about 20 to 90 bytes per iteration and an operation cost of about 40 opera-tions per iteration, the ratio of operations to storage is roughly 1-to-1. For this reason, HINTreveals memory regimes and taxes bandwidth, a critical issue to accurate performance prediction.LINPACK [2], matrix multiply, and the Solver section of the original SLALOM benchmark haveoverly high ratios of operations to memory references. We maintain that mainstream computingis memory bandwidth limited and that most benchmarks disguise, rather than reveal, the limitsof that bandwidth. We plan to correlate application performance with HINT measurements toverify that HINT accurately predicts application performance.
Many RISC workstations depend heavily on data residing in primary or secondary cache, andperformance can drop drastically on large applications that do not cache well. The largest vectorcomputers are fast within the confines of undersized static-RAM memories, but must use diskI/O or SSD-type storage to scale execution times up to what people are willing to wait. Paging todisk, for computers that support it, is clearly visible in HINT speed graphs as a steep drop inperformance between two regions of relatively constant QUIPS (see Section 4).
2.3 Parallel versions
Parallel computing is now pedestrian enough that a number of hardback books on it are avail-able at an introductory level. Some of these (see [7, 9]) use as a simple example the task of inte-grating           from 0 to 1 by simply partitioning the [0,1] interval among the processors. Sincethe analytical answer is π, one gets the tutorial satisfaction of comparing the program output to3.14159...  We believe credit is due Cleve Moler for introducing this example as a tutorial whilehe was on the staff of Intel Corporation. While a HINT benchmark could use           for its func-
tion, we arrived at          instead because it favors neither x nor y decompositions, can be com-puted using fixed point (integer) arithmetic without overflow using the maximum representablewhole numbers, and yields a theoretical quality Q = N after N hierarchical subdivisions.
To make HINT run in parallel, one need only make a few alterations to the approach describedfor the π calculation. In the textbook examples, each processor is responsible for a single sub-
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interval of [0,1]. For instance, processor j of p processors might integrate the interval [ j ⁄p ,( j + 1) ⁄p ].The processors then consolidate their partial sums. We modify this in that we integrate a differ-ent function, use precise whole-number upper-lower bounds, and use a moderate amount ofscattered decomposition in the interval. We let each processor take a sampling of scattered start-ing intervals, not a single interval. Too many starting intervals increases time to reach the firstanswer. Too few decreases the ability of each processor to pick the best interval to split, and acharacteristic “scallop” formation occurs in the graph of QUIPS versus time as processors makeslightly less effective choices about where to concentrate their splitting efforts. We use the com-promise of four scattered intervals, but this is user-adjustable.
Measuring the performance of parallel computing has been especially difficult because the sourceprograms must be altered, and because most benchmarks do not scale. HINT solves the firstproblem by making the kernel as small and as easy to parallelize as possible without sacrificingrealism. The scalability and tolerance for varying memory sizes have already been explained.Thus, HINT can provide performance data for even the most exotic architectures in roughly thesame amount of time and effort as a conventional benchmark on a conventional serial computerused to take.
2.4 Anticipated objections to HINT
No benchmark can predict the performance of every application.Absolutely true. It is easy to find two applications and two computers such that their rankingsare opposite depending on the application; therefore, any benchmark that produces a perfor-mance ranking must be wrong on at least one of the applications. We maintain, however, thatmemory references dominate most applications and that HINT is unique in its ability to measurethe memory-referencing capacity of a computer. Our early tests indicate it has high predictivepowers, much better than extant benchmarks; see Section 4.3.
It’s only a kernel, not a complete application.There is considerable difference between a kernel like dot product or matrix multiply and theproblem of rigorously bounding an integral. Most “kernels” are code excerpts. The work measureis typically something like the number of iterations in the loop structure, or an operation count(ignoring precision or differing weights for differing operations). HINT, in contrast, is a minia-ture standalone scalable application. It accomplishes a petty but useful calculation, and definesits work measure strictly in terms of the quality of the answer instead of what was done to getthere. Although each iteration is simple, it still involves over a hundred instructions on a typicalserial computer, and includes decisions and variety that make it unlikely a hardware engineercould improve HINT performance without also improving application performance. HINT re-sembles a Monte Carlo calculation in that the calculation can be stopped at any time; for bothHINT and Monte Carlo methods, the answer simply gets better with time.
QUIPS are just like Mflop/s; they are nothing new.One can translate Whetstones to Mflop/s, SPECmarks to Mflop/s, and LINPACK times to Mflop/s. QUIPS measures something more fundamental, and no such translation is meaningful. Avector computer or a parallel computer will probably have to do more operations to equal theanswer quality of a scalar or serial computer. Conventional benchmarking would credit thevector or parallel computer with every operation performed, without regard to the utility of theoperation. We feel QUIPS is an improvement over MIPS and Mflop/s in this respect. Also, acomputer can get a high QUIPS rating without performing a single floating-point operation,



since one is free to use whatever form of arithmetic (integer, floating point, even character-based)suits the architecture. On a given computer, the quality improvements are not proportional tothe number of operations once the limits of precision begin to show. QUIPS resemble Mflop/s inthe “per second” suffix, but the resemblance ends there.
This will just measure who has the cleverest mathematicians or the trickiest compilers.Unlike SLALOM and other benchmarks with liberal definitions, HINT is not amenable to algo-rithmic “cleverness.” It is already order N, and the rules clearly forbid that any knowledge aboutthe function being integrated is used, other than the fact that it is monotone decreasing on theunit interval. Similarly, common compiler optimizations are all that are useful. While there is amajor improvement in using optimization over using no optimization, we haven’t seen any way toimprove the optimized output very much… even with hand-coded assembler.
For parallel machines, the only communication is in the sum collapse.The “diameter” of a parallel computer is the maximum time to send a communication from oneprocessor to another. This has much to do with the performance of algorithms that are limited bysynchronization costs, global decisions (such as convergence criteria or energy balance), andmaster-slave type work management. Testing a sum collapse is an excellent way to get a quickreading of the diameter of a parallel computer. We challenge anyone to find a more predictivetest of parallel communication that is this simple to use.
3. Single-number ratings: Net QUIPS
There is always a tug-of-war between the distributors of computer performance data and thecasual interpreters of it. The distributors tend to produce copious data showing the differentfacets of the measurement, and the interpreters tend to want a single number that answers thequestion, “How good is it?” Anticipating that our graphs of QUIPS versus time or QUIPS versusmemory size for various data types will be summarized, especially for marketing and procure-ments, we have defined a method of distilling a QUIPS graph down to a single number:
Net QUIPS is the integral of the quality Q divided by the square of the time, from the first timeof quality improvement t0 to the last time measured.  This is the same mathematically as thearea under the QUIPS curve, plotted on a log(time) scale.

 Net QUIPS = ∫ log(t0)QUIPS(t) d(log t)
= ∫ log(t0)Q(t) ⁄ t d(log t) = ∫ t0Q(t) ⁄ t2 dt

Table 1 shows a SLALOM-style list of single-number QUIPS ratings. “fp” indicates 64-bit IEEEfloating point, and “int” means the 32-bit integer QUIPS. All were run by Q. Snell and J. Korverat Ames Lab in June to September 1994, except for the Paragon SUNMOS runs which were doneat Sandia by Q. Snell in September 1994.



Vendor, No. of Net Operating Compiler andHardware PE's MQUIPS,   System Commanddata type OptionsIntel Paragon 1840 633. fp SUNMOS       icc512 249. -04 -knoieee64 46.2     -Mvect32 25.716 13.58 7.074 3.762 2.03Intel Paragon 32 12.6 fp OSF/1  1.0.4      cc     -03   -knoieeenCUBE 2S 256 35.8 fp IRIX 4.0.5 +      ncc128 18.4 Vertex 3.2     -02  -64 9.42   ncube2s32 4.8416 2.498 1.294 0.672 0.361 0.26nCUBE2 128 12.6 fp IRIX 4.0.5 +     ncc -064 7.81 Vertex 3.232 4.0016 2.068 1.074 0.572 0.331 0.20SGI Challenge L 8 17.5 fp IRIX 5.2    cc  v3.18R4400/150 4 10.2   -03  -sopt1 4.62MasPar MP-1 16384 16.5 fp ULTRIX 4.3       mplMasPar MP-2 4096 15.7 fp ULTRIX 4.3       mplHP 712/80i 1 3.48 fp HP-UX 9.05    gcc v2.5.8     -03DEC 3000/300L 1 3.39 fp OSF/1  1.3     cc  -03SGI Indy SC 1 2.70 fp IRIX 5.2    cc v3.18R4000/100    -03  -soptSun SPARC 10 1 2.34 fp SunOS 5.3 gcc v2.5.8-03IBM PC 1 2.09 int MS-DOS 5.0    gcc 2.5.7Pentium       -03SGI Indy PC 1 1.86 int IRIX 5.2    cc v3.18R4000/100        -03DEC 5000/240 1 1.31 ULTRIX 4.3    cc  -03SGI Indigo 1 0.97 fp IRIX 5.2    cc v3.18R3000/33        -03IBM PC 1 0.82 int MS DOS 5.0   gcc 2.5.7486/50        -03COMPAQ 1 0.38 int MS-DOS 5.0    gcc 2.5.7Contura Aero        -03486SX/25Macintosh 1 0.27 int MacOS 7.1     MPW CQuadra 840AVfull opt.Mac intosh 1 0.13 int MacOS 7.1     MPW CPowerbook 520cfull opt.

If more (user-available) memory or cache isadded to a system, then the QUIPS will behigh for a larger range of time and thus im-prove Net QUIPS. Improved precision will liftthe Q overall, and thus increase Net QUIPS.Lack of interruptions from dæmons or otherusers will be reflected with higher Net QUIPS.Lower latency will allow the integration tostart with a smaller t value and can dramati-cally improve Net QUIPS. Burst speed andsustained speed are both reflected in NetQUIPS. Philosophically, Net QUIPS totals theQUIPS weighted inversely with the time ittakes to get to that speed. The unit of NetQUIPS is quality improvement per second, thesame as QUIPS.
We are hoping people will learn to interpretHINT graphs like those shown in Section 4,and not have to rely on single-number distilla-tions. We have not included the peak Mflop/sratings of the computers in Table 1, feelingthat they fail to convey any useful informationin most cases and often mislead.
Net QUIPS can be used to compare two operat-ing systems, as shown by the 32-processorParagon entries for SUNMOS and OSF shownin Table 1. It also can be used to make speedupplots, although we feel “speedup” is anothermisleading metric as typically measured andreported. A cursory examination of the tableshows that Net QUIPS does not quite doublewhen the number of processors doubles, yetthe performance scales over a wide range. Thiscorresponds well to studies of practical applica-tions measured using scaled speedup.
It is possible to measure the speed of humansusing paper and pencil with HINT. Our initialexperiments with college-educated adultsindicate that a person is about 0.1 QUIPS.People, unlike computers, tend to increaseprecision dynamically. HINT can allow one tomake reasonable comparisons of the numericalcomputing power of humans compared tomachines.

Table 1. Net QUIPS ratings



4. Examples
For the following HINT plots, we use a logarithmic scale for time, with approximately decibelresolution (10 divisions per decade) samples of the time axis. This usually has the effect of re-moving performance drops caused by occasional interrupts, but some performance discontinuitiesare repeatable functions of the architecture.
4.1 SGI Indy SC—various data types
To demonstrate the precision-independence of HINT, we ran it on a Silicon Graphics Indy SC forC types double, float, int , and short . These represent 53, 24, 32, and 15 bits of usefulprecision. See Fig. 5. For regions where all four graphs are defined, the QUIPS are in a range
±15% of their mean value. The short  run ran out of precision in a millisecond, but otherwiseresembled performance for the other data types. The float  and int  runs were also precision-limited, not memory-limited. There is a characteristic decrease in quality improvement by abouthalf near the end of a precision-limited run. The double  run extended to the end of virtualmemory.

Fig. 5. Comparison of Different Precisions
Fig. 5 indicates the presence of a primary and a secondary cache. Although the graph uses timeas the horizontal axis, a graph using memory as the independent variable shows the dropoffs tooccur at 8K bytes and 1M bytes. These are the data cache sizes on the SGI Indy SC.

Time in Seconds

K
Q

U
IP

S

10–6 10–5 10–4 10–3 10–2 10–1 100 101 1020
50

100
150
200
250
300

double(53 bits)int(31 bits)float(24 bits)short(15 bits)

End of 8 KbytePrimary Cache

Paging to Disk
End of 1 MbyteSecondary Cache



4.2 Current workstations
The second example, shown in Fig. 6, plots QUIPS for a variety of current workstations. It isinteresting to note that the SPEC performance appears to be well predicted by examining thespeed ratio in the 0.001 to 0.01 second range. Being a fixed-size benchmark, SPEC is doomed toperiodic resizing and revision as advances in computer power make the old benchmark a mis-match to the computer capabilities. Since the current SPEC is already dated, it is not surprisingthat it now fits comfortably into the secondary cache of some workstations.

Fig. 6. Comparison of Various Workstations
4.3 Parallel computers
Systems at Ames Laboratory, Sandia National Laboratories, and Silicon Graphics were tested toobtain the graphical data shown in Figure 7. The number of processors for each is shown in thelegend in parentheses.
The ratio of Intel Paragon QUIPS to those of the nCUBE 2S corresponds closely to the 2–4xperformance per processor we have observed on applications. For example, the NAS ParallelBenchmarks [1, 3] show an overall performance (Cray Y-MP = 1.0) of 0.94 for 128 nCUBE 2Snodes, 1.61 for 256 nCUBE 2S nodes, and 2.19 for 128 Paragon nodes. The ratio per processor isconsistent across all components of the NAS benchmark. [Note: Paragon nodes are about 8x  thecost and form factor of nCUBE nodes.] The NAS benchmarks require man-months to port andtune to a particular architecture, and then run fairly on only a limited range of a parallel productline because of their fixed size. Since HINT provides similar information in less than two hoursof conversion effort and runs on any size computer, we feel it is a more cost-effective and flexibleway of obtaining predictive data for new architectures.
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Fig. 7. Comparison of Several Parallel Systems
The “peak Mflop/s” rating of the Intel i860XP node is over 25 times that of the nCUBE 2S proces-sor (75 Mflop/s versus 2.9 Mflop/s). This is an utterly misleading specification. Unless quad loadinstructions are used, the memory bandwidth is 200 MB/s for the Intel; this compares with 100MB/s for the nCUBE. Hence, bandwidth seems to be the better raw specification to use, if onecannot perform a benchmark or application test. HINT reflects bandwidth.
For the MIMD parallel computers, there is an “acceleration” up to the peak speed caused by thediameter of the ensemble, the amount of time to do global communication.
The MasPar and Intel computers exhibit the narrowest time range of any computers we havetested. Although their Net QUIPS ratings are respectable, their relatively long time to firstresult and short time before memory is exhausted imply they are special-purpose computers.Performance could be improved on the low end by complicating the program to use a subset ofthe processors, and possibly on the high end by using parallel I/O explicitly to extend storage. Anarrow HINT graph indicates a special-purpose computer, probably caused either by unusuallyhigh latencies or insufficient memory relative to the computing speed.
5. Conclusions
The HINT benchmark is designed to last. It allows fair comparisons over extreme variations incomputer architecture, absolute performance, storage capacity, and precision. It improves onSLALOM in being linear (answer quality, memory usage, and operations all are proportional),being very low cost to convert to different architectures, and unifying the precision and memorysize into the performance. We have attempted to create a speed measure that is as pure andabsolute as an information-theoretic measure can be, yet is practical and useful as a predictor ofapplication performance. Time will tell whether HINT measures correlate well with the a wide



variety of scientific applications; of course there will be applications for which HINT does notrank the computer-application combination correctly. However, we suspect it will predict applica-tion performance very accurately compared to other benchmarks now in use. Because HINT issimple and very easy to apply even on hard-to-use computer systems, we hope it will provideinsight not otherwise available.
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