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ABSTRACT

The computing community has long faced the problem of scientifically comparing
different computers and different algorithms. This difficulty is especially pronounced for
“Grand Challenge” computing, and the lack of a performance evaluation paradigm has
had a negative effect on the entire HPCC program. Our failure to articulate the goals of
some of our Grand Challenges has raised doubts about the program at the federal level. In
this paper, a model is proposed that shows a practical way to define and communicate
ends-based performance of an application, without the means-based measures such as
“teraflops” or “double precision.” Unlike most performance analysis, we incorporate hu-
man issues such as monetary cost and program development time into the model. Exam-
ples are given to illustrate the paradigm.

1. INTRODUCTION
The term “Grand Challenge” was coined by Nobel Laureate Kenneth G. Wilson, who

also articulated the current concept of “computational science” as a third way of doing
science. Posing a scientific effort as a specific challenge like “climate prediction” or
“protein folding” implies an engineering rather than a research approach, and that there is
a point at which one can define success. The Grand Challenge problems have the fol-
lowing in common:

• They are questions to which many scientists and engineers would like to know an-
swers, not just esoterica.

• They are difficult; we don’t know how to do them right now.

• We think they can be done by computer, but we think current computers are not
“powerful” enough.

So how does one know when a Grand Challenge has been solved? In asking research-
ers this question, I find the question met with resistance, even resentment. Perhaps having
a firm test of success means either the effort can be proved unsuccessful (which might
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mean cessation of funding) or it might be proved successful (which, ironically, also might
mean cessation of funding). As long as the frontier of a challenge is ill defined and mov-
able, a Grand Challenge effort can keep success just out of reach. Can a computational
chemist, for instance, define a level of physical accuracy and a molecule complexity at
which chemists will have nothing more to study? It seems unlikely that this will happen.

The HPCC program is now under attack because of failure to specify goals. In
“HPCC Research Questioned” [6], Fred Weingarten points out that Congress cast 65 dis-
senting votes against extending HPCC, raising such questions as:

• What are the real goals of the HPCC program?
• How can we measure progress toward those goals or lack thereof?

Somehow, we need concrete measures of HPCC progress without making HPCC goals as
narrowly defined as those of a moon shot or a superconducting supercollider.

The solution to this, and to future large-scale computational efforts, lies in effective
performance evaluation paradigms. Paradigms such as “A teraflop/s on a real applica-
tion” are not effective, for reasons explained below. Neither is “the smaller the execution
time, the better” by itself, since below some amount of time, other things become more
important.

2. ENDS VERSUS MEANS: THE FAILURE OF “FLOP/S”
Suppose a track coach, training runners for mile races, decides that faster running im-

plies more Footsteps Per Second (FSPS). He then makes the even shakier deduction that
more FSPS implies faster running, and that his athletes can shift their goals from winning
races to practicing to maximize FSPS.

The result, obviously, would be absurd. All the coach would achieve would be a col-
lection of runners taking rapid steps that don’t get them very far. Would higher FSPS
ratings on a runner imply higher speed on actual races? Probably not. In fact, it might
correlate inversely. Yet, this absurdity is exactly what we do when we confuse “flop/s”
ratings with scientific goals.

Consider the following example from the NAS Parallel Benchmarks [1]: Four com-
puters can be ranked from “fastest” to “slowest” by peak gigaflop/s ratings as follows:

System Nominal
Gflops/s

Nominal
Rank

TMC CM-2 15.0 1
Intel iPSC/860 7.7 2

Cray Y-MP 2.6 3
nCUBE 2 2.4 4



Using the first of the NAS Parallel Benchmarks (one so forgiving of slow interproc-
essor communications that it goes by the name “EP” for “Embarrassingly Parallel”), the
ranking goes as follows for “sustained” gigaflop/s [2]:

Actual
Rank

System Actual
Gflops/s

Nominal
Rank

1 nCUBE 2 2.6 4
2 Cray Y-MP 1.1 3
3 Intel iPSC/860 0.44 1
4 nCUBE 2 0.36 2

The ranking is almost exactly reversed! The computers with the higher peak flop/s
ratings tend to have lower memory bandwidths, indicating a tendency of some hardware
designers to follow the ARPA design goal of maximum flop/s while ignoring everything
else. For a given hardware budget, higher peak flop/s ratings might imply lower sustained
speed.

Note that the nCUBE 2 exceeds its “peak” gigaflop/s rating. This is because the EP
benchmark counts logarithms, square roots, and multiplications modulo 246 as 25, 12, and
19 operations based on the Cray Hardware Performance Monitor, but the nCUBE 2 has
instructions that permit it to do these things in fewer operations. This brings up another
problem with the use of flop/s as a metric: There is no such thing as a “standard” or
“unit” floating-point operation. This fact has been well articulated by Snelling [4].

Consider the following Fortran program segment, where variables beginning with A-
H and O-Z are 64-bit real numbers, and those beginning with I-N are integers:

      Y = X ** ABS(Z)
      J = Y + 1
      IF (Z .LT. 0.) W = J
      Z = SIN(W)

In the first line, does an absolute value count as a flop? It means merely zeroing a single
bit, so it seems it shouldn’t get credit for such work. But many architectures use the
floating-point adder functional unit to perform absolute values, which would show it as
work on a hardware performance monitor. What should the power function “**” count,
when both the base and the exponent are real numbers? Should comparisons with zero as
in the third line count as flops, even though they are trivial from the hardware point of
view? Of course, the IF test introduces an operation count that can only be determined at
run time, assuming one counts the integer-to-float conversion W = J as a floating-point
operation. Estimates for the effort to compute a SIN range from about 4 flops for com-
puters with very large interpolation tables to 25 flops as measured by NASA/Ames using
a Cray Hardware Performance Monitor. Clearly, flop counts are not architecture-
independent, yet most of the texts on numerical methods assume that they are.



The main reason flop/s metrics are useless is algorithmic: Improving an algorithm
often leads to a lower flop/s rate. Consider a problem that arises in computational
chemistry: multiplying two 1000 by 1000 matrices that are each about 10% sparse. If one
ignores sparsity, the operation has as its BLAS kernel either an AXPY or a DOT, depend-
ing on outer loop nesting:

Method 1:
      DO 1 K = 1,1000
        DO 1 J = 1,1000
          DO 1 I = 1,1000
1           C(I,J) = C(I,J) + A(I,K) * B(K,J)

This operation is “Cray food.” Traditional vector processors effortlessly get over 80%
of peak flop/s ratings on this loop, perhaps with minor restructuring but usually just using
the standard Fortran compilers. Unfortunately, only about 1% of the operations contribute
to the answer if the A and B matrices are 10% sparse. A sparse code to do the same com-
putation, even without a sparse storage scheme, might save operations via something like
this:

Method 2:
      DO 2 K = 1,1000
        DO 2 J = 1,1000
          IF (B(K,J) .NE. 0.) THEN
            DO 1 I = 1,1000
1             IF (A(I,K) .NE. 0.) C(I,J) = C(I,J) + A(I,K) * B(K,J)
          END IF
2     CONTINUE

As anyone who has used vector computers can attest, the IF statements in Method 2
might degrade the flop/s rate by an order of magnitude. A typical performance measure
might show Method 1 to run in 1.0 seconds at 2.0 gigaflop/s on a vector computer, but
Method 2 to run in 0.1 seconds at 0.2 gigaflop/s on the same computer. From the hard-
ware viewpoint, Method 1 is ten times faster, but from the user viewpoint, Method 2 is
ten times faster. By the prevalent HPCC esthetic, Method 2 is less “efficient,” farther
from its Grand Challenge goal, and thus should not be used. Yet, it arrives at the answer
in an order of magnitude less time. There are many such examples:

Higher Flop/s Rate Quicker Answers
Conventional Matrix Multiply Strassen Multiplication

Cholesky Decomposition Conjugate Gradient
Time-Domain Filtering FFTs

All-to-All N-Body Methods Greengard Multipole Method
Successive Over relaxation Multigrid

Explicit time stepping Implicit time stepping
Recompute Gaussian integrals Compute Gaussian integrals once; store
Material property computation Table look-up



The methods on the left persist in the repertoire of scientific computing largely be-
cause they keep the front panel lights on, not because they are better methods. There is
something seriously wrong with the notion of “efficiency” that awards a higher score to
the slower algorithms in the left column.

A related false goal is that of “speedup.” As commonly defined, speedup is a metric
that rewards slower processors and inefficient compilation [5]. It is especially misleading
when measured on fixed-size problems, since the emphasis on time reduction as the only
goal implies that parallelism in computing has very limited payoff. The main use of par-
allel computing hardware is increase in capacity in some performance dimension, not
time reduction for problems we can already solve on a single processor.

Increasing memory does not always increase the merits of a simulation. A poorly cho-
sen basis set for quantum chemistry will require more terms and more storage to get the
same accuracy in an answer than would a better choice of basis functions. We think using
increased memory always means better answers, but this is not the case. We conclude this
section with a table comparing means-based measures with ends-based measures:

Means-Based Ends-Based
Flop/s ratings Time to compute an answer

Bytes of RAM Detail, completeness in answer
Number of Processors Problems that can be attempted

Use of commodity parts Cost and availability of system to end user
Double precision Match to actual physics

ECC memory System reliability
Speedup Product line range

3. A SOLVED GRAND CHALLENGE
In the 1950s and 1960s, the space program was compute-bound. A successful mission

had to be very conservative on fuel, and that meant having fast, accurate course correc-
tions to control the rockets. For the computers of that era, ordinary differential equations
in real time represented a Grand Challenge.

The USSR, being behind the U.S. in computer technology, initially relied on ground-
based computers for mission control because their equipment was too heavy and too
bulky to put on board. They incurred the difficulty of transmission delays and having to
coordinate multiple transceivers around the globe. The U.S. was able to put most of the
computing on board, greatly increasing the safety margin and fuel economy.

Where is this “Grand Challenge” now? It’s solved, that’s where. Computing is no
longer regarded as an obstacle to space travel. The challenge did not simply move ever
further out of reach. The 1990s Space Shuttle uses the improvements to computing power
to manage the multivariate response to aerodynamic effects in the atmosphere, a more
difficult task, but the response needed is well within the computing power available.



This example shows that Grand Challenges can be specified precisely, and actually
can be “solved.” The goal was to supply enough computer guidance to send hardware
into space and bring it back safely. Can we be so precise about the current Grand Chal-
lenges?

4. “UTILITY” AND “ACCEPTABILITY”
William Pardee [3] has suggested something similar to the following method of

thinking about a particular parameter of success: The utility of the answer to a Grand
Challenge is a function of each aspect of its answer, where positive utility means the an-
swer was worth having and negative utility means the answer is worse than no answer at
all (for example, when the answer is misleading). For example, the utility as a function of
“decimals of accuracy in the answer” might look like the following:

Figure 1. “Utility Curve”

[Note that this is quite different from the amount of precision that might be required in
the computation for typical algorithms. We have grown so accustomed to the use of 64-
bit arithmetic with 14 to 16 decimals of accuracy in the computation that we tend to for-
get to consider what we need in the accuracy of the result.]

A somewhat different model is to define “acceptability,” a function bounded by 0
(unacceptable) and 1 (completely acceptable) that is monotone increasing in some pa-
rameter, assuming all other parameters are completely acceptable. Such curves might be
approximated as “logistic curves,” which are functions of the form

A(x) = 1 / (1 + ea + bx) (1)

where b is less than zero.



Figure 2. Typical “Acceptability Curve”

Both the Utility model and the Acceptability model ignore cross terms; for example, a
chemistry application with 100 atoms and only one decimal of accuracy might be accept-
able, but when applied to systems of 3 atoms, only answers accurate to four decimals will
be competitive with research done elsewhere. Where cross terms are easy to recognize, it
may be more useful to plot utility versus some combination of more than one variable
(like, accuracy in decimals times the square root of the number of atoms).

To see why each Grand Challenge community needs to come up with its own set of
Acceptability graphs, consider the differences between various groups of scientists re-
garding run times.

Figure 3. Run time Acceptability Variation by Scientific Culture



From personal observation, QCD physicists have an extraordinary tolerance for execution
times that take a significant fraction of a human lifetime; they expect to wait months for a
single result. The upper limit of their patience is simply that for runs of more than a year,
computer hardware improvements permit those problems to be started later and finished
sooner. Chemists and most scientists operate more in the range of several-hour to several-
day runs. Weather prediction (not climate prediction) is clearly limited by the time scale
of geophysical events. Outside the Grand Challenge community, there are computer ap-
plications such as text editing where interactions requiring more than a few seconds are
considered intolerable.

If we are to quantify Grand Challenge goals, we have to include not just the measures
of closeness to physical reality, but the practical demands of the entire project. There is a
tendency to sweep such issues as programming effort and system up time “under the rug”
when measuring computing performance. Although they are harder to quantify than op-
eration counts or word sizes, they can be included in the model.

5. THE VARIABLES MOST MODELS LEAVE OUT
Performance studies commonly assume that the only figure of merit one need con-

sider is the reciprocal of the execution time. Putting questions of fixed time versus fixed
size scaling for a moment, there are certainly many other things that matter to the com-
puter user, such as:

• Time for each edit-compile-run-debug cycle
• Time to create or convert an effective simulation program on a particular architecture
• Initial cost of the system
• Cost per run, or better, the cost for a complete solution to the Grand Challenge
• Probability that any given run on the computer will fail from reliability problems

(hardware or operating system software)
• Validity of the answer (non-obvious failure modes)

Compared to these issues, the question of how close we get to 1 teraflop/s seems
moot. All of these variables can be made into specific goals by estimating the Accept-
ability function and declaring a value at which we declare the subgoal as “met.” The ac-
ceptabilities Ai can be multiplied to form a Composite Acceptability A = ΠiAi, a bit like
taking the “AND” Boolean operator on all requirements.

The beauty of this approach is that it allows fair comparison of widely varying archi-
tectures and algorithms. One is free to change an algorithm to fit a different architecture
without worrying about uncontrolled comparisons.

6. EXAMPLE: GRAPHIC RENDERING
The problem of correctly rendering the appearance of a room defined by the loca-

tions, colors, and reflective properties of its surfaces and lights is a Grand Challenge in
the computer graphics community. What are the requirements of this challenge?



1) It should be able to handle any geometry or reflection property one might find in a
typical building interior.

2) It should take less than one minute to compute.

3) It should cost less than one dollar for each multi-view rendering.

4) The time to make a small alteration to the geometry should be no greater than the
time to re-render the image.

5) A video display of the scene should be indistinguishable from a photograph of a
real room with the same geometry. More precisely, it should be within 5% of true
luminosity at a display resolution of 1024 by 1024 pixels, and should have less
than 1% chance of catastrophic failure from any reason.

6) We want to meet these goals by the year 2000, with the equivalent of two full-
time people working on it.

This list of goals is not the way the graphics community has approached the chal-
lenge. You will not find such a specification in the SIGGRAPH Proceedings or similar
literature. Some researchers keep vague goals similar to these in their head, but the pre-
vailing mode of comparing rendering methods is to display a picture and show that it
“looks realistic.” There is seldom any mention of the mathematical accuracy, the cost of
the system that created the picture, the amount of time spent computing, or the effort to
create the program.

By expressing these goals, our program at Ames Lab changed its approach to the ren-
dering problem. Taking each of these goals in turn:

1) We explicitly restrict ourselves to surfaces expressible by convex planar quadri-
laterals with diffuse surface reflectivity.

2) We allow some runs to last several hours for the sake of prototyping, but other-
wise retain this goal.

3) We retain this goal if one does not figure in the program development cost or the
facilities start-up costs.

4) We retain this goal.

5) We relax this goal by tolerating about a 10% deviation from correct luminosity.

6) We are ahead of schedule.

These compromises can be made more precise using the Acceptability functions of
each goal. One could fit logistic curves to each goal, and then define the product as the
net acceptability. The Acceptability might be a step function for qualitative requirements
like point 1.

Point 5 requires a new formulation of the problem. Normally, diffuse surfaces are
treated using the “radiosity equation”:



b(r) = e(r) + ρ(r) ∫S F(r, r') b(r') dr' (2)

where b is the radiosity (or luminosity) in watts or lumens per meter, r and r' are points
on surfaces in the scene, e is the emissivity, or light emitted as a source from each point,
S is the set of all surfaces, and F is the “coupling factor” that measures the geometric
coupling between points in the scene. For diffuse surfaces, the equation is exact.

This is discretized to form a system of linear equations, but here is where the more
explicit goal changed our approach: We discretize so as to form a rigorous upper bound
and lower bound on the solution. The coupling factor F attains a maximum and a mini-
mum for any pair of patches i and j, which are the elements Fijmax and Fijmin of the discre-
tized system The upper-bound solution can be initially bounded by the maximum light
emissivity emax times the sum of the geometric series for the maximum reflectivity ρmax:

emax (1 + ρmax + ρmax
2 + ρmax

3 + …) = emax / (1 – ρmax) (3)

The lower bound solution can be bounded by zero. Both bounds are independent of
location in the scene. Now we subdivide the geometry, keeping careful track of maxima
and minima in the new discretization. The answer is then improved by Gauss-Seidel it-
eration without over relaxation, guaranteeing monotone approach to the correct solution.
We alternate the refining of the subdivision with the iteration of the Gauss-Seidel solver
to tighten the bounds on the answer, producing steady improvement in the quality of the
answer with increased computation. To illustrate this, consider the simple two-
dimensional radiosity problem shown in Figure 4.

Figure 4. Simple Radiosity Geometry



Figure 5 shows how the true, continuous solution to the equation is bounded by the dis-
crete form, for a coarse discretization. The answer “quality” can now be defined as the
reciprocal of the total area between lower and upper bounds.

Figure 5. Rigorously Bounded Solution

The use of rigorous bounds for the answer to a continuum problem seems to be rare.
Computational scientists tend to use double precision and trust that it represents the true
answer except for the last few decimals of a 15-digit answer. This is seldom a valid ap-
proach, since discretization error dominates most problems. Once we realized there was
no point to requiring an error of 10–15 in the solution with 1% error in the discretization,
we were able to make tremendous improvements to our run times. We are currently run-
ning graphics rendering problems that would take over a thousand times as long using our
old paradigm. Stating our goals clearly caused us to realize that much of our effort was
misplaced. A similar approach could well be used for the federal Grand Challenges.

7. Translating GC Goals to Hardware Design Goals
Hardware designers are faced with an ill-defined problem: How does one allocate

hardware costs to maximize performance on a Grand Challenge? The naïve approach of
“Make every component as high performance (which usually means ‘fast’ or ‘large’) as
possible” does not work because cost cannot be ignored. Unfortunately, the “Teraflops”
goal has sent the message to designers that nothing matters but floating point arithmetic



speed. Thus, designers are implicitly guided to provide I/O, memory speed, memory size,
ease of use, and MTBF only to the extent that they affect the nominal flop/s rate. This has
had a disastrous effect on the suitability of many designs for Grand Challenge applica-
tions. Every engineering goal must have subgoals; however, some of our subgoals seem
to be the wrong ones in that they lead us farther from, not closer to, the ultimate goal.

Some specifics: A sustained teraflop/s implies a memory size of roughly 1 teraword
(not terabyte), which at 1994 personal computer SIMM prices costs from $250M to
$1000M. The processors capable of a net theoretical performance of 1 teraflop/s, in con-
trast, cost under $5M using currently available RISC chips. Why, then, is the flop/s per-
formance still regarded as the design challenge? It is the least of our worries.

Balancing memory bandwidth seems to lead to several pitfalls: belief in caches as a
complete solution, and reliance on benchmarks that involve unrealistic levels of reuse of
data elements (such as matrix multiply). The Level 3 BLAS are characterized by order n3

operations on order n2 quantities. Such operations are beloved of marketing departments
because they produce high flop/s numbers for advertising claims, but represent a vanish-
ingly small part of Grand Challenge workloads. A better design rule would be to test all
computer operations on order n algorithm constructs. To do n multiplications as a mem-
ory-to-memory operation in 64-bit precision requires moving 24n bytes to or from main
memory. Hence, a teraflop/s computer should have a nominal total memory bandwidth of
24 terabytes/s, a daunting figure in 1994. Uncached memory bandwidth has a strong cor-
relation with computer hardware cost. There is no free lunch. In 1994, I estimate the cost
of memory bandwidth in a balanced system to be $40 per megabyte/s. The bandwidth for
a “sustained teraflop/s” therefore costs about $100M if scaling is linear (optimistic scal-
ing, but realistic for distributed memory systems that rely on explicit message passing).

SUMMARY
We have used the term “Grand Challenge” to organize our HPCC efforts and justify

support for large-scale computational research. The goal of “a sustained teraflop per sec-
ond” is the hardware challenge often mentioned in the same breath as “Grand Challenge.”
These goals may not lie in the same direction. To the extent that we let the measure of
operations per second be an end in itself, we are distracted from the real goal of solving
physical problems by computer. For some specific examples, the goals may even be in
opposite directions; we can achieve higher nominal flop/s rates only by using less so-
phisticated algorithms that delay the solution.

If we define all our performance measures in terms of answer goals, these problems
disappear. We can compare parallel computers with vector computers with serial com-
puters running all different algorithms without questions of “fairness.” With the improved
definition, hardware designers can produce computers better suited to our needs, and we
can use the systems in a way far better suited to solving the Challenges.
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