
Are Parallel Computers
“Special Purpose?”
By John Gustafson
Computational Scientist
Ames Laboratory-DOE

“The development of massively-
parallel computers has led some
people to confuse these computers
with supercomputers. It can be
shown, however, that massively-
parallel computers are a more
specialized type of computer because
their range of application decreases
as the number of processors
increases.” —Jack Worlton

The wagons are circling around traditional vector
supercomputing. Worlton’s definitions show a desire to
keep the term “supercomputer” consistent with beliefs of
the late 1970’s and early 1980’s about what a
supercomputer is. This is a view all too familiar to those of
us who have been using massively parallel computers: that
only serial processors are “true” supercomputers, and only
serial processors are general-purpose.

The reasoning behind this opinion usually makes use of
one or more of the following ideas:

• If the application isn’t highly parallel, then a parallel
computer wastes a lot of hardware.

• If the application isn’t highly parallel, the slow sections
destroy performance.

• If it doesn’t easily run a dusty Fortran deck, it’s not a
supercomputer.

Certainly there is precedent for massively parallel
machines being specialized… collections of one-bit
processors such as the ICL DAP, Goodyear MPP, and
Connection Machine, come to mind. What makes these
machines special-purpose is more the shared instruction
stream and the ultra-simplicity of each processor than the
fact that there are many processors.

The more recent ensemble machines, with autonomous,
robust processors, have proved so successful at so many
applications that they hardly seem “special purpose.” To
pick a particular example, the massively parallel
NCUBE/ten has been used in the following “special
purpose” functions:

Fluid Dynamics Database Management
Structural Analysis Semi-Empirical Chemistry
Image Processing Transaction Processing
Radar Simulation Neural Networks
Chess Seismic Data Processing
Robotics Particle-In-Cell Methods
Galaxy Modeling Factoring Large Integers
Machine Vision Oil Reservoir Simulation

Arguments against massively parallel computing claim
that large ensembles are “inefficient,” with hardware sitting

idle for serial applications. This argument is seldom applied
to the complicated hardware inside a traditional
supercomputer. At any given time, how many of the
pipeline stages in a serial vector supercomputer are busy?
How much of the monolithic memory is working on the
application? Unless the application happens to continuously
and simultaneously require, say, an integer add, a floating-
point add, a floating-point multiply, a reciprocal
approximation, and four memory references, most of that
very expensive hardware is just consuming electricity.
Users of such machines have grown used to sustained
performance less than 10% of the theoretical peak. In
contrast, the 1024-processor NCUBE seldom gets less than
30% of its peak.

At Sandia, we compared a 30,000-line radar simulation
program running on an NCUBE/ten and one processor of a
CRAY Y-MP. The CRAY version had been optimized, using
the SSD for faster I/O and tuning compute-intensive
routines. The NCUBE/ten is currently running 6.2 times
faster than the Y-MP. The reason was traced to the greater
flexibility of the massively parallel system at branching,
scalar operations, and irregular task sizes. Work done at
Caltech points to the same conclusion: the more complex
the application, the greater the advantage of machines like
the NCUBE over vector supercomputers.

If an application is inherently serial, why assume most of
the processors in an ensemble must sit idle while that
application runs? These arrays can be, and in practice are,
shared by multiple users. If a restaurant has many tables, it
doesn’t mean it’s specialized to serving only banquets. On
the contrary, it is easy to allocate just the right number of
processors to a job. Can a vector machine adjust its vector
lengths to suit the needs of each application?

While vector supercomputers are still faster at running
dusty-deck Fortran than other machines, I wonder how
much longer we can assert that those dusty Fortran decks
belong at the leading edge of computing. Let me offer the
flip sides of the arguments above:

• If the application isn’t highly serial, then a serial
computer wastes a lot of human time.

• If the application isn’t highly serial, the parallel sections
result in discarded performance.

• If you can’t or won’t modify your dusty Fortran deck,
then you’re not doing supercomputing.

 “Easy to use” should not be confused with “general
purpose.” The concepts are independent. The idea that
supercomputers should be easy to own, program, or
access is contradictory. The reason for the “super” in the
word “supercomputing” is that neither the computer nor the
effort to use it are ordinary. To solve the biggest problems
humanly possible, some mix of high hardware cost,
complex facilities, extra programming effort, lower reliability,
and limited access is tolerable. That is why phrases like
“personal supercomputer,” and “affordable supercomputer”
abuse English. The fact that parallel machines trade ease-
of-use for high performance is even more reason to
consider them supercomputers.

If we return to the original meaning of “supercomputer,”
and resist the tendency of vendors to pull the word over to
their product, it seems clear that the term must include
massively parallel computers. 


