
1

The Scaled-Sized Model: A Revision of Amdahl’s Law

John L. Gustafson

Sandia National Laboratories
Abstract

A popular argument, generally attributed to Amdahl [1], is
that vector and parallel architectures should not be carried
to extremes because the scalar or serial portion of the code
will eventually dominate. Since pipeline stages and extra
processors obviously add hardware cost, a corollary to this
argument is that the most cost-effective computer is one
based on uniprocessor, scalar principles. For architectures
that are both parallel and vector, the argument is
compounded, making it appear that near-optimal
performance on such architectures is a near-impossibility.

A new argument is presented that is based on the
assumption that program execution time, not problem size, is
constant for various amounts of vectorization and
parallelism. This has a dramatic effect on Amdahl’s
argument, revealing that one can be much more optimistic
about achieving high speedups on massively parallel and
highly vectorized machines. The revised argument is
supported by recent results of over 1000 times speedup on
1024 processors on several practical scientific applications
[2].

1. Introduction

We begin with a review of Amdahl’s general argument, show a
revision that alters the functional form of his equation for
speedup, and then discuss consequences for vector, parallel, and
vector-parallel architectures. [Vector and multiprocessor
parallelism can be treated uniformly if pipeline stages are
regarded as independent processors in a heterogeneous
ensemble.] The revised speedup equation is supported with
recent experimental results for fluid mechanics, structural
analysis, and wave mechanics programs. We then argue that the
conventional approach to benchmarking needs revision because
it has been based on Amdahl’s paradigm.

2. Fixed-Sized Problem Model

Suppose that a program executes on a scalar uniprocessor in
time s + p, where s is the portion of the time spent in serial or
scalar parts of the program, and p is the portion of the time spent
in parts of the program that can potentially be pipelined
(vectorized) or run in parallel. For algebraic simplicity, we set
the program run time to unity so that s + p = 1. Figure 1 shows
the effect on run time of using an architecture that has vector or
parallel capability of a factor of N on the p portion of the
program.

Figure 1. Fixed-Sized Model (Amdahl’s Argument)

The figure makes obvious the fact that speedup with these
assumptions can never exceed 1 ⁄ s even if N is infinite.
However, the assumption that the problem is fixed in size is
questionable. An alternative is presented in the next section.

3. Scaled Problem Model

When given a more powerful processor, the problem generally
expands to make use of the increased facilities. Users have
control over such things as grid resolution, number of time
steps, difference operator complexity, and other parameters that
are usually adjusted to allow the program to be run in some
desired amount of time. Hence, it may be most realistic to
assume that run time, not problem size, is constant.

As a first approximation, we assert that it is the parallel or
vector part of a program that scales with the problem size.
Times for vector startup, program loading, serial bottlenecks,
and I/O that make up the s component of the run do not grow
with problem size (see experimental results below). As a result,
the diagram corresponding to Figure 1 for problems that scale
with processor speed is shown in Figure 2.

131

Figure 2. Scaled Model Speedup

It could well be that the new problem cannot actually be
run on the serial processor because of insufficient
memory, and hence the time must be extrapolated. Rather
than ask, “How long will the current-sized problem take
on the parallel computer?” one should ask, “How long
would the new problem have taken on the serial
computer?” This subtle inversion of the comparison
question has the striking consequence that “speedup” by
massive parallelism or vectorization need not be restricted
to problems with miniscule values for s.

Architectures like hypercubes have memory distributed
over the ensemble, so that a problem appropriate for a
1024-node hypercube would exceed the memory capacity
of any one node by a factor of 1024. The simplest way to
measure “speedup” on such a system is to measure the
minimum efficiency of any processor (computation versus
interprocessor communication overhead) and multiply by
the number of processors.

In striving for high efficiency, the functional form s + Np
is far more forgiving than Amdahl’s 1 ⁄ (s + p ⁄ N), as
illustrated in Figure 3 for N = 64.

Figure 3. Scaled versus Fixed-Sized Speedup

Figure 3 applies whether we are dealing with a 64-processor
system or a vector computer with 64-stage pipelines (64 times
faster vector performance than scalar performance, similar to the
ratio for memory fetches for the CRAY-2).

Note in particular the slope of the graph at s = 0 in Figure 3. For
Amdahl’s fixed-sized paradigm, the slope is

d(speedup) ⁄ ds |s = 0 = N – N 2 (1)

whereas for the scaled paradigm the slope is a constant:

d(speedup) ⁄ ds |s = 0 = 1 – N (2)

Comparison of (1) and (2) shows that it is N times “easier” to
achieve highly-vectorized or highly-parallel performance for
scaled-sized problems than for constant-sized problems, since
the slope is N times as steep in Amdahl’s paradigm.

4. Experimental Results

At Sandia, we have completed a study of three scientific
applications on a 1024-node hypercube [2]. The applications are
all scalable by the number of time steps and grid resolution
(finite-element or finite-difference). We measured speedup by
the traditional technique of fixing the problem size and also by
scaling the problem so that execution time was constant. The
resulting speedups are as follows:

By careful management of the parallel overhead, all three
applications showed speedups of several hundred even when a
fixed-sized problem was spread out over 1024 processors (i.e.,
using 0.1% of available memory). However, as the global
problem size was scaled to the number of processors (i.e., fixing
the problem size per processor), the p portion of the problem
grew linearly with the number of processors, N. Specifically, at
N = 1024 we measured the increase in p to be 1023.9959 for the
Beam Stress Analysis, 1023.9954 for Baffled Surface Wave
Simulation, and 1023.9965 for Unstable Fluid Flow. Deviation
from 1024 was caused primarily by small terms that grow as log
N.

When Amdahl’s Law is applied to the results of [2], it shows
that four-hour runs were reduced to 20-second runs, of which
about 10 seconds was caused by s and cannot be much further
improved. But when run time is fixed by scaling the problem,
the speedups indicate very little reason why even more massive
parallelism should not be attempted.

132

5. Combination Vector-Parallel Architectures

It is perhaps worth repeating that pipelining is a form of
parallelism. As an example, Figure 4 shows a simplified
diagram of an array processor and a low-order hypercube.

Figure 4. Parallelism in Vector Processors and Ensembles

The vector processor in Figure 4 has a 3-stage floating-point
multiplier (FM1, FM2, FM3), 2-stage floating-point adder (FA1,
FA2), and 3-stage memory unit (M 1 , M 2 , M3), whereas the
hypercube has processors P0 to P7. The vector processor has
special heterogeneous units with few options on the direction of
output, whereas the ensemble on the right has general
homogeneous units with three possible outputs from every unit.
Nevertheless, both are parallel processors in the sense of
Amdahl’s Law: hardware is wasted whenever an algorithm
cannot make use of all the units simultaneously.

With the notable exceptions of the NCUBE/ten hypercube
(massively parallel but no vectors) and the Japanese
supercomputers (multiple pipelines but only one processor),
virtually all high-performance computers now make use of both
kinds of parallelism: vector pipelines and multiple processors.
Examples include the CRAY X-MP, ETA10, and FPS T Series.
If we assume that Amdahl’s argument applies to both techniques
independently, then speedup is the product of the parallel and
vector speedups:

Speedup = 1 ⁄ [(s1 + p1 ⁄ N1)(s2 + p2 ⁄ N2)], (3)

where s1 is the scalar fraction, p1 is the pipelined fraction, N1 is
the vector speedup ratio, s2 is the serial fraction, p2 is the parallel
fraction, and N2 is the number of processors. An example is
shown in Figure 5 for the case of the CRAY X–MP/4, where we
estimate vector speedup N1 = 7.

The figure makes near-optimal performance appear difficult to
achieve. Even when parallel and vector content are only 50% of
the total, the speedup ranges only from 7x to 11.2x. Now we
apply the argument of Section 3; the scaled speedup, assuming
independence of vector and parallel speedups, is

Speedup = (s1 + N1p1)(s2 + N2p2), (4)

which has the form shown in Figure 6.

The speedup when parallel and vector content is 50% is now
16x to 17.5x, considerably higher than before even for such
small values of N1 and N2. It is much easier to approach the
optimum speedup of N1N2 than Amdahl’s Law would imply.

Figure 5. Parallel-Vector Speedup (Fixed-Sized Model)

Figure 6. Parallel-Vector Speedup (Scaled Model)

133

6. Benchmarks

To the best of the author’s knowledge, no widely-accepted
computer benchmark attempts to scale the problem to the
capacity of the computer being measured. The problem is
invariably fixed, and then run on machines that range over
perhaps four orders of magnitude in performance.

A well-known example is the LINPACK benchmark maintained
by J. Dongarra of Argonne National Laboratory [3]. The
original form of the benchmark consisted of timing the solution
of 100 equations in 100 unknowns, single-precision or double-
precision, with or without hand-coded assembly language
kernels. The problem requires about 80 KBytes of storage and
687,000 floating-point operations, and thus can be performed on
even small personal computers (for which the task takes two or
three minutes). When run on a supercomputer such as the
CRAY X-MP/416 (8.5 nsec clock), the benchmark occupies
only 0 .06% of available memory, only one of the four
processors, and executes in 0.018 seconds (less time then it
takes to update a CRT display). The resulting 39 MFLOPS
performance is only a few percent of the peak capability of the
supercomputer, for reasons explainable by Amdahl’s Law.

It seems extremely unrealistic to assume that a supercomputer
would be used in this way. Recognizing this, Dongarra has
added 300-equation and 1000-equation versions to his list, with
dramatic effect on the observed performance. The 1000-
equation benchmark uses 6% of the CRAY memory and
requires 669 million floating-point operations. With the problem
so scaled, the solution requires 0.94 seconds, uses all four
processors efficiently, and shows performance of 713 MFLOPS.
It is fair to compare this with a scalar machine such as the VAX
8650 running the 100-equation problem, which takes about the
same amount of time (0.98 seconds) and yields 0.70 MFLOPS.
Thus, it is fair to conclude that the CRAY is 1020 times as fast
as the VAX based on roughly constant-time runs, which may be
a more representative comparison than the ratio of 56 that
results from constant-sized problem runs.

Perhaps one way to modify the LINPACK benchmark would be
to solve the largest system of equations possible in one second
or less, and then use the operation count to find MFLOPS. This
allows a very wide range or performance to be compared in a
way more likely to correlate with actual machine use. In one
second, a personal computer with software floating-point
arithmetic might solve a system of 10 equations at a speed of
about 0.0007 MFLOPS. In the same amount of time, a
supercomputer might solve a system of 1000 equations at a
speed of about 700 MFLOPS—a million times faster than the
personal computer. The same technique can be easily applied to
any benchmark for which the problem can be scaled and for
which one can derive a precise operation count for the purpose
of computing MFLOPS.

7. Summary

When comparing processor X to processor Y, it is generally
assumed that one runs the same problem on both machines and
then compares times. When this is done and X has far more
performance capability than Y as the result of architectural
differences (pipelines or multiple processors, for example), the
comparison becomes unrealistic because the problem size is
fixed. Because of the historical failure to recognize this, both
vectorization and massive parallelism have acquired the
reputation of having limited utility as a means of increasing
computer power.

The seemingly disproportionate effect of a small scalar or serial
component in algorithms vanishes when the problem is scaled
and execution time is held constant. The functional form of
Amdahl’s Law changes to one in which the slow portion is
merely proportional rather than catastrophic in its effect. The
constant-time paradigm is especially well-suited to the
comparison of computers having vastly different performance
capacities, as is usually the case when comparing highly-
vectorized machines with scalar machines, or massively-parallel
machines with serial machines.

References

[1] Amdahl, G., “Validity of the Single-Processor Approach to
Achieving Large-Scale Computer Capabilities,” AFIPS
Conference Proceedings 30, 1967, pp. 483–485.

[2] Benner, R. E., Gustafson, J. L., and Montry, G. R.,
“Development and Analysis of Scientific Applications
Programs on a 1024-Processor Hypercube,” SAND 88-
0317, February 1988.

[3] Dongarra, J. J., “Performance of Various Computers Using
Standard Linear Equations Software in a Fortran
Environment,” Technical Memorandum No. 23, Argonne
National Laboratory, October 14, 1987.

