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Abstract 

A new homogeneous computer architecture developed by FPS combines two fundamental 
techniques for high-speed computing: parallelism based on the binary n-cube interconnect, and 
pipelined vector arithmetic. The design makes extensive use of VLSI technology, resulting in a 
processing node that can be economically replicated. Processor nodes incorporate high-speed 
communications and control, vector-oriented floating-point arithmetic, and a novel dual-ported 
memory design. Each node is implemented on a single circuit board and can perform 64-bit 
floating-point arithmetic at a peak speed of 16 MFLOPS. Eight nodes are grouped together with 
a system node and disk support to form modules. These modules, housed in cabinet-sized 
packages, are capable of 128 MFLOPS peak performance and make up the smallest 
homogeneous units of larger systems. The new FPS system achieves a careful balance between 
high-speed communication and floating-point computation. This paper describes the new 
architecture in detail and explores some of the issues in developing effective software. 

I. Introduction 

The quest for increased computational power in scientific computing and the limits of 
physical electronic devices have led to the exploration of new architectures as alternatives to 
traditional monolithic designs [9, 2]. Multiprocessor designs hold the promise of tremendous 
performance increases, provided the interconnection network can support the parallelism 
inherent in the computation. Vector pipelines provide significant performance increments, 
exploiting finer-grained parallelism. Further advantage is gained by using parallel functional 
units to overlap address calculations with memory references, floating-point adds, and floating-
point multiplies [1]. 

Large scientific applications are sometimes easily partitioned among processors using a 
shared memory, yet most are just as amenable to distributed memory designs [3, 4]. Shared 
memory systems are expensive when scaled to large dimensions because of the rapid growth of 
the interconnection network; the distance from memory to the processing elements also degrades 
performance by increasing latency [8]. Large system configurations are most readily realized 
with distributed memory based on a limited form of interconnection, such as the pyramid or the 
binary n-cube [5]. Memory latency can be greatly reduced when each processor has its own high-



speed store. Moreover, the cost of switching and the time to route messages is much smaller on 
such statically configured systems. With this view, much current computer architecture research 
has focused on the use of ensembles of identical processors in homogeneous configurations that 
employ message passing over limited forms of static interconnects [7, 8]. 

Floating Point Systems (FPS) has developed a homogeneous computer, the FPS T Series, 
based on the binary n-cube interconnection scheme. The individual nodes are 64-bit floating-
point computers that combine vector arithmetic, dual-port memory, and fast communications 
links between nodes. The peak performance of these nodes is 16 MFLOPS. The FPS T Series is 
built from modules containing eight of these nodes connected to each other and to a system 
support ring. These modules, with an aggregate performance of 128 MFLOPS, may be combined 
to form even larger systems that promise orders of magnitude increases in computing speed per 
dollar over today’s supercomputers. 

II. Processor Node Architecture 

An individual processor element is called a node. It contains a control processor, floating-
point arithmetic, dual-port memory, and communication links to other nodes (see Figure 1). The 
FPS T Series design provides all of these functions on a single printed circuit board. Each of the 
major elements of the node has been implemented with advanced, cost-effective VLSI 
technology, in contrast with more traditional bit-slice designs. 

 

 
Figure 1. The FPS T Series processor 

Control 

The ability to interpret and execute programs resides in the central Control unit. The T Series 
control unit is a 32-bit CMOS microprocessor with the following functional features: 
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• 7.5 MIPS instruction rate 
• Byte addressability (4 GByte address space) 
• 2048 bytes of on-chip RAM (single processor cycle) 
• 3-cycle minimum access time for off-chip memory 
• Four bidirectional serial communications links 
• Stack-oriented instruction set with variable operand sizes 
• Two-level process priority and interrupt services 

 
The control processor executes system and user applications code and it also serves to arrange 
vector operands to be sent to the vector arithmetic hardware. The control processor can execute 
integer arithmetic and gather/scatter operations in parallel with the vector unit, and it provides 
inter-node communications via the serial links. 
 
All features of the microprocessor are directly accessed through a high-level language called 
Occam. Occam differs from languages like Pascal or C in that it directly provides for the 
execution of parallel, communicating processes. Channel commands can make direct data 
transfers between concurrent processes. A single process can be constructed from a collection by 
specifying sequential, alternative or parallel execution of the constituent processes. This 
combination of program structure and integrated communication allows Occam to describe the 
control and data flow for virtually any scientific computing algorithm, and to control the high-
level operation of the vector arithmetic unit (see below). 

Memory 

An essential feature of a computer’s architecture is its central memory, which supplies both 
instructions and operands to the processing units. The main memory of each FPS T Series node 
consists of 1 MByte of dual-ported dynamic RAM. The control processor and communications 
links read and write 32-bit words through a conventional random-access port, while the vector 
arithmetic unit makes use of a collection of vector registers closely coupled with main memory. 
A vector register can be loaded with an entire 1024-byte row of memory, in parallel (see Figure 
1), in the same time that it would have taken to read or write a single 32-bit word. There is one 
parity bit for each byte in memory. 
 
The control processor views the memory as a single bank of 256K words (32-bit). The vector 
arithmetic unit views memory as two banks of vectors, with 256 vectors in one bank and 768 
vectors in the other, aligned on 1024-byte boundaries. Thus, for 32-bit operations, the vectors are 
256 elements long, while for 64-bit operations, the vectors are 128 elements in length. The 
division of memory into two banks permits two inputs in parallel to the arithmetic unit on each 
cycle (125 ns). The output of the arithmetic unit shifts results into either or both banks. Hence, 
operations such as SAXPY, Vector Add, and Vector Multiply proceed at the full speed of the 
arithmetic components, without being limited by available memory bandwidth. This dual-bank 
memory organization allows the node to function without the need for auxiliary data registers or 
cache. 
 



The control processor can access a 4-byte word in 400 ms. Its effective bandwidth to RAM is 
therefore 
 

(4 bytes) / (0.4 µs) + 10 MB/s 
 

A primary use for the control processor is to gather operands into a contiguous vector, and 
scatter results back to random locations in memory. To move a 64-bit operand from one memory 
location to another requires two 32-bit reads and two 32-bit writes, which take a total of 1.6 µs. 
This is the gather-scatter time within a node. For 32-bit operands, it is 0.8 µs per element. 
 
An entire row of data can be moved to or from a vector register in only 400 ns; this means that 
the effective bandwidth between memory and a vector register is 
 

(1024 bytes) / (0.4 µs) = 2560 MB/s. 
 
An application might make use of this extraordinary speed by moving data physically, rather 
than keeping linked lists of pointers to vectors, as for example, in pivoting rows of a matrix or 
sorting records. 
 

 
Figure 2. Processor bandwidths 

The vector registers each supply data to the arithmetic unit at a maximum rate of one 32-bit word 
every 62.5 ns, or one 64-bit word every 125 ns. The vector register bandwidth supports two 
vector inputs and one vector output every 125 ns in 64-bit mode. Thus, its bandwidth is 
 

(3 words) × (8 bytes/word) / (0.125 µs) = 192 MB/s. 
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Arithmetic 

The ability to perform high-speed arithmetic is essential in scientific computing. The arithmetic 
hardware in the FPS T Series consists of a floating-point adder, floating-point multiplier, 
interconnection hardware, and some sequencing hardware. The adder and multiplier each can 
produce a 32- or 64-bit result every 125 ns, yielding peak performance of 16 MFLOPS per node. 
Floating-point operations are performed using the proposed IEEE Floating-point standard 
format; however, gradual underflow is not supported. In 64-bit mode, the mantissa has 
approximately 15 decimal digits of precision (53 bits) and a dynamic range of roughly 10–308 to 
10+308 (11-bit binary exponent). 
 
The arithmetic units operate in pipelined mode. The adder has a six-stage pipeline. It can 
perform floating-point addition and subtraction in 32- and 64-bit modes, comparisons, and data 
conversions. The multiplier is five-stage in 32-bit mode and seven-stage in 64-bit mode. These 
pipeline lengths are appropriate for the vector access described above. Scalar operations can be 
efficiently performed by grouping like operations for level-order evaluation. 
 
The arithmetic functional units are supervised by a preprogrammed micro-sequencer that 
implements a collection of vector arithmetic operations referred to as vector forms. The 
programmer only needs to describe the input and output vectors and the vector form desired. 
This frees the control processor for other tasks while vector operations are being executed. 
Scalars can be held in the input registers on each floating-point functional unit, and outputs from 
the functional units can be fed directly back as inputs to perform operations such as dot products 
and sums. This provides a wide range of useful vector forms without memory reference 
limitations. The complete arithmetic unit operates in parallel with the node control processor. 
The arithmetic unit only interrupts the controller when a vector operation has completed, or an 
error has occurred. 

Communications 

In a distributed computer system, communications channels are required for passing data 
between processors participating in a common computational process. The control processors of 
the FPS T Series contains drivers for four serial, bidirectional communications links each with a 
nominal rate of 0.9375 Mbytes/s. Every 8-bit byte is sent with two synchronization bits and one 
stop bit, and requires two acknowledge bits from the receiver. This results in a maximum 
unidirectional bandwidth of over 0.5 MB/s per link. The total bandwidth of the four links is thus 
over 4 MB/s. With all links operating, the control processor performance is degraded only 
slightly. The links operate via DMA transfers with a startup time of about 5 µs. 
 
Each link is multiplexed four ways to provide a total of 16 bidirectional sublinks per node. With 
software support, these sublinks divide the available bandwidth. Two sublinks are used for 



system communication, and two will often be utilized for mass storage or external I/O. This will 
typically leave 12 sublinks available for connection to other compute nodes. 
 
A convenient way to interpret the relative bandwidths is with respect to the arithmetic processing 
time for 64-bit operations: 
 
 (Arithmetic Time) : (Gather Time) : (Link Transfer Time) 
 .125 µs 1.6 µs 16 µs 
 
that are in the approximate ratios 
 

1 : 13 : 130 
 
Thus, a vector should enter into about 13 operations while gathering the next vector into an 
aligned, contiguous order. With this provision, the control processor can completely overlap the 
gather time with vector arithmetic, and the node can approach peak speed. Of course, if vectors 
are always aligned and elements contiguous, no such restriction applies. Similarly, roughly 130 
operations should result from every 64-bit word that must be moved between nodes over a link. 

III. System Description 
The members of the T Series consist of a number of node processors connected as a binary n-
cube. There are 2n processors, with n connections per node. If we number the processors from 0 
to 2n–1, each processor is directly connected to all others whose numbers differ in only one binary 
digit.  The binary n-cube can be mapped onto many important applications topologies, including 
meshes (up to dimension n), rings, cylinders, toroids, and even FFT butterfly connections of 
radix 2 [5,6]. Since the maximum number of connections between any two processors is n, long-
range communication costs grow only as O(log2n). 



  
Figure 3. Binary n-Cube Mappings 

Modules and System Ring 
A processor node is constructed on a single etched circuit board. Eight nodes are combined with 
disk storage and a system board to form a module. Such a module has 128 MFLOPS peak 
floating-point performance, and 8 MB of user RAM. The local inter-node communications 
bandwidth is over 12 MB/s, while the system board can support 0.5 MB/s to an external 
connection. 
 
The system board provides input/output and management functions. It is connected to the nodes 
by a thread of communications links that traverses the eight processor nodes. The system boards 
are directly connected by communications links to form a system ring that is independent of the 
binary n-cube network (connecting the processor nodes). The primary function of the system 
disk is to record memory “snapshots” which checkpoint computations for error recovery, and to 
backup snapshots from other modules. The user is able to specify the interval between snapshots. 
About 10 minutes provides a good compromise between time spent to record memory and 
interval between restart points. It takes about 15 seconds to take a snapshot, regardless of 
configuration. 
 
The module requires three links for intramodule hypercube network communications, while the 
system board connections require two links from each processor node. This reduces remaining 
links to 11 for hypercube and external communications. 
 
Two modules (16 nodes) form a cabinet, or 4-cube (a tesseract). A cabinet is modular and self-
contained in a standard 19-inch rack-mounted assembly. With power supplies, system disks, and 
air-cooling fans, it does not require any special “computer room” facilities. Larger systems are 
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simply assembled from these units by interconnecting cables. Connections up to 40 feet can be 
made without special consideration. 

Larger Configurations 
A four-cabinet (64-node) system has an aggregate peak speed of 1 GFLOPS and total user 
memory of 64 Mbytes. Eight system-disk units provide backup and restart capability. This 
configuration of the T Series can be located in many laboratory and computing facilities. The air-
cooled unit requires no special facilities beyond normal air conditioning, and the power 
requirements are supplied by typical 220 VAC services. 
 
There are enough links per node to permit a 14-cube to be constructed as the largest T Series 
configuration. Using two links per node for external I/O and mass storage systems, a maximum-
sized 12-cube consists of 4096 nodes arranged as 256 cabinets (4-cubes). Such a system has over 
65 GFLOPS peak processing performance and 4 Gbytes of primary RAM storage. Special 
facilities would be required to house the largest configurations. 
 
Because the system is homogeneous, i.e., each module is identical and contains identical 
connections to other modules, programming is greatly simplified. This homogeneity also insures 
that the balance between computing speed, main storage, mass storage, and external I/O can be 
preserved as configurations become large. The specifications of any sized FPS T Series can be 
derived from the properties of the individual modules. 

IV. Conclusion 
The incorporation of high-speed vector processing into a homogeneous parallel architecture has 
resulted in a scientific computer with performance scalable over three orders of magnitude. The 
use of a dual-ported dynamic RAM achieves a new level of processor integration that eliminates 
the need for separate data registers or cache. Parallel floating-point adders and multipliers, 
accessed by standard vector operations, provide a close match to scientific computing 
algorithms. 
 
With nodes organized into eight-processor modules, each with system disk and I/O services, the 
new architecture can be viewed as a truly homogeneous system. The FPS T Series, incorporating 
VLSI components to make the system both cost-effective and compact, provides a careful 
balance between processor speed, memory access, and interprocessor communications 
bandwidth. 
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