
The Architecture of a Homogeneous Vector Supercomputer

John L. Gustafson, Stuart Hawkinson, and Ken Scott

Floating Point Systems, Inc.
Beaverton, Oregon 97005

Abstract

A new homogeneous computer architecture developed by FPS combines two fundamental
techniques for high-speed computing: parallelism based on the binary n-cube interconnect, and
pipelined vector arithmetic. The design makes extensive use of VLSI technology, resulting in a
processing node that can be economically replicated. Processor nodes incorporate high-speed
communications and control, vector-oriented floating-point arithmetic, and a novel dual-ported
memory design. Each node is implemented on a single circuit board and can perform 64-bit
floating-point arithmetic at a peak speed of 16 MFLOPS. Eight nodes are grouped together with
a system node and disk support to form modules. These modules, housed in cabinet-sized
packages, are capable of 128 MFLOPS peak performance and make up the smallest
homogeneous units of larger systems. The new FPS system achieves a careful balance between
high-speed communication and floating-point computation. This paper describes the new
architecture in detail and explores some of the issues in developing effective software.

I. Introduction

The quest for increased computational power in scientific computing and the limits of
physical electronic devices have led to the exploration of new architectures as alternatives to
traditional monolithic designs [9, 2]. Multiprocessor designs hold the promise of tremendous
performance increases, provided the interconnection network can support the parallelism
inherent in the computation. Vector pipelines provide significant performance increments,
exploiting finer-grained parallelism. Further advantage is gained by using parallel functional
units to overlap address calculations with memory references, floating-point adds, and floating-
point multiplies [1].

Large scientific applications are sometimes easily partitioned among processors using a
shared memory, yet most are just as amenable to distributed memory designs [3, 4]. Shared
memory systems are expensive when scaled to large dimensions because of the rapid growth of
the interconnection network; the distance from memory to the processing elements also degrades
performance by increasing latency [8]. Large system configurations are most readily realized
with distributed memory based on a limited form of interconnection, such as the pyramid or the
binary n-cube [5]. Memory latency can be greatly reduced when each processor has its own high-

speed store. Moreover, the cost of switching and the time to route messages is much smaller on
such statically configured systems. With this view, much current computer architecture research
has focused on the use of ensembles of identical processors in homogeneous configurations that
employ message passing over limited forms of static interconnects [7, 8].

Floating Point Systems (FPS) has developed a homogeneous computer, the FPS T Series,
based on the binary n-cube interconnection scheme. The individual nodes are 64-bit floating-
point computers that combine vector arithmetic, dual-port memory, and fast communications
links between nodes. The peak performance of these nodes is 16 MFLOPS. The FPS T Series is
built from modules containing eight of these nodes connected to each other and to a system
support ring. These modules, with an aggregate performance of 128 MFLOPS, may be combined
to form even larger systems that promise orders of magnitude increases in computing speed per
dollar over today’s supercomputers.

II. Processor Node Architecture

An individual processor element is called a node. It contains a control processor, floating-
point arithmetic, dual-port memory, and communication links to other nodes (see Figure 1). The
FPS T Series design provides all of these functions on a single printed circuit board. Each of the
major elements of the node has been implemented with advanced, cost-effective VLSI
technology, in contrast with more traditional bit-slice designs.

Figure 1. The FPS T Series processor

Control

The ability to interpret and execute programs resides in the central Control unit. The T Series
control unit is a 32-bit CMOS microprocessor with the following functional features:

Bank A
64 KWords

Vector Reg Vector Reg

status
opcodelink 3link 2

Control Processor

link 1link 0 Arithmetic Controller

Bank B
192 KWords

mux 3mux 2mux 1mux 0 7-Stage
!

6-Stage
+

2 K
Static
RAM

32-bit
P

• 7.5 MIPS instruction rate
• Byte addressability (4 GByte address space)
• 2048 bytes of on-chip RAM (single processor cycle)
• 3-cycle minimum access time for off-chip memory
• Four bidirectional serial communications links
• Stack-oriented instruction set with variable operand sizes
• Two-level process priority and interrupt services

The control processor executes system and user applications code and it also serves to arrange
vector operands to be sent to the vector arithmetic hardware. The control processor can execute
integer arithmetic and gather/scatter operations in parallel with the vector unit, and it provides
inter-node communications via the serial links.

All features of the microprocessor are directly accessed through a high-level language called
Occam. Occam differs from languages like Pascal or C in that it directly provides for the
execution of parallel, communicating processes. Channel commands can make direct data
transfers between concurrent processes. A single process can be constructed from a collection by
specifying sequential, alternative or parallel execution of the constituent processes. This
combination of program structure and integrated communication allows Occam to describe the
control and data flow for virtually any scientific computing algorithm, and to control the high-
level operation of the vector arithmetic unit (see below).

Memory

An essential feature of a computer’s architecture is its central memory, which supplies both
instructions and operands to the processing units. The main memory of each FPS T Series node
consists of 1 MByte of dual-ported dynamic RAM. The control processor and communications
links read and write 32-bit words through a conventional random-access port, while the vector
arithmetic unit makes use of a collection of vector registers closely coupled with main memory.
A vector register can be loaded with an entire 1024-byte row of memory, in parallel (see Figure
1), in the same time that it would have taken to read or write a single 32-bit word. There is one
parity bit for each byte in memory.

The control processor views the memory as a single bank of 256K words (32-bit). The vector
arithmetic unit views memory as two banks of vectors, with 256 vectors in one bank and 768
vectors in the other, aligned on 1024-byte boundaries. Thus, for 32-bit operations, the vectors are
256 elements long, while for 64-bit operations, the vectors are 128 elements in length. The
division of memory into two banks permits two inputs in parallel to the arithmetic unit on each
cycle (125 ns). The output of the arithmetic unit shifts results into either or both banks. Hence,
operations such as SAXPY, Vector Add, and Vector Multiply proceed at the full speed of the
arithmetic components, without being limited by available memory bandwidth. This dual-bank
memory organization allows the node to function without the need for auxiliary data registers or
cache.

The control processor can access a 4-byte word in 400 ms. Its effective bandwidth to RAM is
therefore

(4 bytes) / (0.4 µs) + 10 MB/s

A primary use for the control processor is to gather operands into a contiguous vector, and
scatter results back to random locations in memory. To move a 64-bit operand from one memory
location to another requires two 32-bit reads and two 32-bit writes, which take a total of 1.6 µs.
This is the gather-scatter time within a node. For 32-bit operands, it is 0.8 µs per element.

An entire row of data can be moved to or from a vector register in only 400 ns; this means that
the effective bandwidth between memory and a vector register is

(1024 bytes) / (0.4 µs) = 2560 MB/s.

An application might make use of this extraordinary speed by moving data physically, rather
than keeping linked lists of pointers to vectors, as for example, in pivoting rows of a matrix or
sorting records.

Figure 2. Processor bandwidths

The vector registers each supply data to the arithmetic unit at a maximum rate of one 32-bit word
every 62.5 ns, or one 64-bit word every 125 ns. The vector register bandwidth supports two
vector inputs and one vector output every 125 ns in 64-bit mode. Thus, its bandwidth is

(3 words) × (8 bytes/word) / (0.125 µs) = 192 MB/s.

Control
Links

Link
Adapter

Memory

Arithmetic Unit

Vector
Registers

0.5
MB/s each

(Instruc-
tions and

status
only.)

10 MB/s

2560
MB/s

64
MB/s

64
MB/s

64
MB/s

Arithmetic

The ability to perform high-speed arithmetic is essential in scientific computing. The arithmetic
hardware in the FPS T Series consists of a floating-point adder, floating-point multiplier,
interconnection hardware, and some sequencing hardware. The adder and multiplier each can
produce a 32- or 64-bit result every 125 ns, yielding peak performance of 16 MFLOPS per node.
Floating-point operations are performed using the proposed IEEE Floating-point standard
format; however, gradual underflow is not supported. In 64-bit mode, the mantissa has
approximately 15 decimal digits of precision (53 bits) and a dynamic range of roughly 10–308 to
10+308 (11-bit binary exponent).

The arithmetic units operate in pipelined mode. The adder has a six-stage pipeline. It can
perform floating-point addition and subtraction in 32- and 64-bit modes, comparisons, and data
conversions. The multiplier is five-stage in 32-bit mode and seven-stage in 64-bit mode. These
pipeline lengths are appropriate for the vector access described above. Scalar operations can be
efficiently performed by grouping like operations for level-order evaluation.

The arithmetic functional units are supervised by a preprogrammed micro-sequencer that
implements a collection of vector arithmetic operations referred to as vector forms. The
programmer only needs to describe the input and output vectors and the vector form desired.
This frees the control processor for other tasks while vector operations are being executed.
Scalars can be held in the input registers on each floating-point functional unit, and outputs from
the functional units can be fed directly back as inputs to perform operations such as dot products
and sums. This provides a wide range of useful vector forms without memory reference
limitations. The complete arithmetic unit operates in parallel with the node control processor.
The arithmetic unit only interrupts the controller when a vector operation has completed, or an
error has occurred.

Communications

In a distributed computer system, communications channels are required for passing data
between processors participating in a common computational process. The control processors of
the FPS T Series contains drivers for four serial, bidirectional communications links each with a
nominal rate of 0.9375 Mbytes/s. Every 8-bit byte is sent with two synchronization bits and one
stop bit, and requires two acknowledge bits from the receiver. This results in a maximum
unidirectional bandwidth of over 0.5 MB/s per link. The total bandwidth of the four links is thus
over 4 MB/s. With all links operating, the control processor performance is degraded only
slightly. The links operate via DMA transfers with a startup time of about 5 µs.

Each link is multiplexed four ways to provide a total of 16 bidirectional sublinks per node. With
software support, these sublinks divide the available bandwidth. Two sublinks are used for

system communication, and two will often be utilized for mass storage or external I/O. This will
typically leave 12 sublinks available for connection to other compute nodes.

A convenient way to interpret the relative bandwidths is with respect to the arithmetic processing
time for 64-bit operations:

 (Arithmetic Time) : (Gather Time) : (Link Transfer Time)
 .125 µs 1.6 µs 16 µs

that are in the approximate ratios

1 : 13 : 130

Thus, a vector should enter into about 13 operations while gathering the next vector into an
aligned, contiguous order. With this provision, the control processor can completely overlap the
gather time with vector arithmetic, and the node can approach peak speed. Of course, if vectors
are always aligned and elements contiguous, no such restriction applies. Similarly, roughly 130
operations should result from every 64-bit word that must be moved between nodes over a link.

III. System Description
The members of the T Series consist of a number of node processors connected as a binary n-
cube. There are 2n processors, with n connections per node. If we number the processors from 0
to 2n–1, each processor is directly connected to all others whose numbers differ in only one binary
digit. The binary n-cube can be mapped onto many important applications topologies, including
meshes (up to dimension n), rings, cylinders, toroids, and even FFT butterfly connections of
radix 2 [5,6]. Since the maximum number of connections between any two processors is n, long-
range communication costs grow only as O(log2n).

Figure 3. Binary n-Cube Mappings

Modules and System Ring
A processor node is constructed on a single etched circuit board. Eight nodes are combined with
disk storage and a system board to form a module. Such a module has 128 MFLOPS peak
floating-point performance, and 8 MB of user RAM. The local inter-node communications
bandwidth is over 12 MB/s, while the system board can support 0.5 MB/s to an external
connection.

The system board provides input/output and management functions. It is connected to the nodes
by a thread of communications links that traverses the eight processor nodes. The system boards
are directly connected by communications links to form a system ring that is independent of the
binary n-cube network (connecting the processor nodes). The primary function of the system
disk is to record memory “snapshots” which checkpoint computations for error recovery, and to
backup snapshots from other modules. The user is able to specify the interval between snapshots.
About 10 minutes provides a good compromise between time spent to record memory and
interval between restart points. It takes about 15 seconds to take a snapshot, regardless of
configuration.

The module requires three links for intramodule hypercube network communications, while the
system board connections require two links from each processor node. This reduces remaining
links to 11 for hypercube and external communications.

Two modules (16 nodes) form a cabinet, or 4-cube (a tesseract). A cabinet is modular and self-
contained in a standard 19-inch rack-mounted assembly. With power supplies, system disks, and
air-cooling fans, it does not require any special “computer room” facilities. Larger systems are

N
point

Meshes Ring FFT

line square cube tesseract

simply assembled from these units by interconnecting cables. Connections up to 40 feet can be
made without special consideration.

Larger Configurations
A four-cabinet (64-node) system has an aggregate peak speed of 1 GFLOPS and total user
memory of 64 Mbytes. Eight system-disk units provide backup and restart capability. This
configuration of the T Series can be located in many laboratory and computing facilities. The air-
cooled unit requires no special facilities beyond normal air conditioning, and the power
requirements are supplied by typical 220 VAC services.

There are enough links per node to permit a 14-cube to be constructed as the largest T Series
configuration. Using two links per node for external I/O and mass storage systems, a maximum-
sized 12-cube consists of 4096 nodes arranged as 256 cabinets (4-cubes). Such a system has over
65 GFLOPS peak processing performance and 4 Gbytes of primary RAM storage. Special
facilities would be required to house the largest configurations.

Because the system is homogeneous, i.e., each module is identical and contains identical
connections to other modules, programming is greatly simplified. This homogeneity also insures
that the balance between computing speed, main storage, mass storage, and external I/O can be
preserved as configurations become large. The specifications of any sized FPS T Series can be
derived from the properties of the individual modules.

IV. Conclusion
The incorporation of high-speed vector processing into a homogeneous parallel architecture has
resulted in a scientific computer with performance scalable over three orders of magnitude. The
use of a dual-ported dynamic RAM achieves a new level of processor integration that eliminates
the need for separate data registers or cache. Parallel floating-point adders and multipliers,
accessed by standard vector operations, provide a close match to scientific computing
algorithms.

With nodes organized into eight-processor modules, each with system disk and I/O services, the
new architecture can be viewed as a truly homogeneous system. The FPS T Series, incorporating
VLSI components to make the system both cost-effective and compact, provides a careful
balance between processor speed, memory access, and interprocessor communications
bandwidth.

References

[1] Charlesworth, A. E., “An Approach to Scientific Array Processing: The Architectural Design
of the AP-120B/FPS-164 Family.” IEEE Computer, Volume 14, Number 9 (1981), 18–27.

[2] Charlesworth, A. E., and Gustafson, J. L., “Introducing Replicated VLSI to Supercomputing:
The FPS-164/MAX Scientific Computer”. IEEE Computer, 19, 3 (1986).

[3] Fox, G. C., “Decomposition of Scientific Problems for Concurrent Processors”. Technical
Report CALT-68-986, Computer Science Dept., Caltech, 1983.

[4] Fox, G. C., and Otto, S. W., “Algorithms for Concurrent Processors”. Physics Today, 37, 5
(1984), 50–59.

[5] Pease, M. C., “The Indirect Binary n-Cube Microprocessor Array”. IEEE Transactions on
Computers, C-26, 5 (1977), 458-473.

[6] Saad, Y., and Schultz, M. H., “Topological Properties of Hypercubes,” Technical Report
YALEU/DCS/RR-389, Computer Science Dept., Yale Univ., 1985.

[7] Seitz, C. L., “Experiments with VLSI Ensemble Machines”. Journal of VLSI Computing
Systems, 1 (1984).

[8] Seitz, C. L., “The Cosmic Cube,” Communications of the ACM, 28, 1 (1985), 22–33.

[9] Seitz, C. L., and Matisoo, J., “Engineering Limits on Computer Performance”. Physics
Today, 37, 5 (1984), 38–45.

