
INCREASING HYPERCUBE COMMUNICATIONS
ON LOW-DIMENSIONAL PROBLEMS

John L. Gustafson
Floating Point Systems, Inc.

September 26, 1986

ABSTRACT

We present a simple but powerful hardware technique for greatly increasing
interprocessor bandwidth on an arbitrary hypercube of processors. If each
processing node has N links to other nodes, then a configuration with only
N /M links in use is capable of increasing bandwidth by M -fold for
applications requiring only (N/M)-dimensional interconnect. This allows
hypercubes to combine the advantages of parallel buses and robust serial
interconnections. This is particularly important on hypercubes favoring
operations on contiguous vectors, since such machines encourage domain
decomposition along “pencils” occupying an entire dimension rather than
subregions which minimize the ratio of surface area to volume. A specific
example is given for the FPS T Series, which presents the additional
challenge of having multiplexed links. T Series configurations up to 128
processors can elect to use a planar (toroidal) interconnect as a linear (ring)
interconnect operating at double the communications rate. Examples of
increased speed on applications are given.

Introduction

Multiprocessors based on the binary N-cube interconnect contain nearest-
neighbor meshes of dimension less than or equal to N . This can be
demonstrated by partitioning the N-digit binary (Gray code) numbering of

each node. Within a partition of n bits, the Gray-code changes in bits
represent linear numbering of 2n processors along a particular dimension.
Different partitions represent different dimensions. For example, suppose
processors in a 6-dimensional binary cube have numbers represented
b1b2b3b4b5b6, where b i is a binary digit. Then the partitioning
(b1)(b2)(b3b4b5b6) represents a three-dimensional domain of size 2×2×16
(with wraparound). Thus, the extreme cases are N partitions with one bit
each (representing an N-dimensional domain with two processors on every
edge) and a single partition representing a 1-dimensional domain of 2N

processors.

Physical implementations of hypercube computers require the existence of N
physical links out of each processor, but do not specify how those physical
links are selected or switched out of the CPU. For example, one might be
restricted to the use of a single link at any time, and communication across
that link might not be able to overlap other CPU activities. This is the
situation in the Caltech Cosmic Cube, and in the Intel iPSC productization of
that hypercube. The NCUBE design allows simultaneous operation of many
DMA links; roughly, 9 of the 22 links (11 input, 11 output) can be active at
any time before main memory bandwidth is exhausted. The FPS T Series
processors are intermediate between these two, in that 4 out of 15
bidirectional links can be active at any time, and can overlap other CPU
activities.

The two preceding paragraphs point to the conclusion that communications
bandwidth is wasted when running problems of low dimensionality on
machines that have the capacity for using several links simultaneously.
Interprocessor communication is typically the most precious resource in a
hypercube and is often the most important factor in application efficiency. In
principle, the hardware connections in a hypercube are entirely point-to-
point, implying that there is really no way to recoup the unused links without
changing the system framework. In practice, there is a solution that exploits
the fact that some systems have a maximum configuration which is much
larger than the typical configuration.

Link Doubling

The FPS T Series provides an example of using link doubling to improve
effective communication speed, although the technique is by no means
confined to that version of the hypercube. The four bidirectional links
embodied in the Inmos Transputer in a node are each software-switchable to
one of four interprocessor links. The former are referred to herein as “hard
links” whereas the latter are referred to as “soft links.” They are organized as
shown in Figure 1.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 1 2 13 14 15Soft Links

Hard Links

Transputer Links

0 1 2 3

(unused)System

Hypercube Links

Figure 1. T Series Link Organization

If i is the number of a soft link and j is the number of the hard link to which
it maps, then

j = i mod 4

so that the burden on the hard links increases evenly as the system grows.
The “system ring” uses soft link 0, the one-dimensional interconnect used

for such functions as uploading or downloading data and programs. Soft link
15 is not driven. The remaining 14 are available for hypercube
interconnections.

Each processor occupies one circuit board, and eight boards are combined
with system facilities to form a “module” which consumes the system soft
link 0 and the first three hypercube links. Note that there is thus no need to
ever multiplex the links for the module, or 3-cube. The packaging is such
that all external cabling is module-to-module, using ordinary D-connectors
with 8 bidirectional channels (32 wires). Two modules are mounted in a
cabinet connected with such a cable combining soft link 4 from every node.
At this point, there is contention between soft link 4 and soft link 0, since
both map to hard link 0. To reassign all four hard links to a different set of
soft links takes about 320 µseconds. If no reassignment is needed, message
startup time is quite low… approximately 9 µseconds.

Larger systems further increase the number of roles played by the hard links.
The largest system so far configured uses up to soft link 6 (64 processors).
At any time, the hard links constitute a two-dimensional (toroidal) domain
capable of fine-grained parallelism. Applications requiring simultaneous use
of more than four soft links tend to be restricted to coarser-grained
parallelism because of the time to reconfigure links.

Less than half of the soft links have been used, suggesting that in fact the
remaining links can be doubled up by adding cables to the system. This need
have no impact whatsoever on system software which already ignores those
channels on small systems, but provides the applications programmer with
additional paths for communication. When links are doubled, the two-
dimensional hard interconnect becomes a one-dimensional hard interconnect
with twice the bandwidth between nearest-neighbor processors. A doubling
scheme is shown in Figure 2.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Soft Links

Hard Links

(Unused)System
Inter-module cablesBackplane Jumpers

Doubled Connection Pairs

Figure 2. Link Doubling on the T Series

Soft link j is cabled the same as soft link 15–j. This means that hard link 0 is
always doubled by hard link 3, and hard link 1 is always doubled by hard
link 2. This is essential for one-dimensional interconnection subsets to have
full use of all four links, since hard links 0 and 3 will always connect one
side of every processing node to a neighbor and hard links 1 and 2 will
always connect the other side. Since soft links 1 to 3 are actually connected
across the backplane of a module, the easiest way to double them is to place
a jumper across corresponding cable sockets for soft links 14 to 12.
Schematically, such jumpers can be pictured as shown in Figure 3.

= an input/output link pair

Soft link 14 Soft link 13 Soft link 12

= jumper wires

Figure 3. Jumpers to Duplicate Backplane Connections

For a 64-processor system, say, the additional hardware required is simply
four cables and 12 jumpers, and insignificant cost compared to the rest of the
system. Yet the effect is to double the performance of problems which are
badly communication bound! The scheme works up to a 128-processor
system, which is a large (and fairly expensive) configuration of the T Series.
For larger configurations, one can gradually remove the doubling, resulting
in loss of double bandwidth across certain paths resembling “fault lines” in
the domain decomposition.

Example: 2D Fourier Transform

On a 16-processor system, the four hard links of a T Series node provide the
two-dimensional point-to-point topology shown in Figure 4, where the
hollow typeface denotes the soft link numbering.

Node
0

Node
1

Node
2

Node
3

Node
4

Node
5

Node
6

Node
7

Node
8

Node
9

Node
10

Node
11

Node
12

Node
13

Node
14

Node
15

1 1

1 1

1 1

1 1

2 2 2 2

2 2 2

3 3

3 3

3 3

3 3
2

4 4 4 4

4 4 4 4

Figure 4. 16-Processor Topology for 2D FFT

However, when performing a radix 2 FFT, only one dimension at a time is
exercised within the network; in fact, only one of the four possible directions
out of a processor is needed to perform the data exchange for the “butterfly”
computations which span processors. Now supposed that the application
programmer recognizes that there are two paths between each processor
pair; one could communicate the real data and the other path the imaginary
data, for example. On one x-directional pass of the 2D FFT, soft link 12 is
used to attach the same processors as soft link 3, and since they map to hard
link 0 and hard link 3 respectively, they can operate simultaneously. On the
other x-direction pass, soft link 14 supplements soft link 1 simultaneously.

1+14 1+14

3+12 3+12

3+12 3+12

3+12 3+12

3+12 3+12

1+14 1+14

1+14 1+14

1+14 1+14

Node
1

Node
2

Node
3

Node
4

Node
5

Node
6

Node
7

Node
8

Node
9

Node
10

Node
11

Node
12

Node
13

Node
14

Node
15

Node
0

Figure 5. Doubled Links for x-Direction Passes of 2D FFT

Then the links must be reconfigured to perform the y-direction passes, but
the amount of computation is large relative to the time to reconfigure the soft
links.

Tests have shown this algorithm, without link doubling, to perform at about
12 MFLOPS on a 512×512 FFT, where each of the processors contains a
128×128 point subdomain of complex 64-bit numbers. Communication
easily dominates the computation in this case. The link doubling is expected
to increase the performance to about 20 MFLOPS.

Significance for Vector Processing

Several hypercubes offer or plan to offer some form of vector arithmetic
capability. This affects the domain decomposition in a profound way, as
illustrated in Figure 6.

Minimum Surface Area
to Volume Ratio

Increased Vector Length
but More Communication

Figure 6. Domain Decomposition Tradeoffs

The Caltech paradigm is to minimize the ratio of surface area to volume to
minimize the penalty for communication; this implies the use of squares or
cubes as optimal subdivisions of 2-space and 3-space. However, this can
make vectors short enough that the startup time for the vector operation
reduces the performance. On a vector hypercube, one attempts to make the
domains as long and thin as possible, with the optimal ratio being where the

computation on interior points just barely overlaps communication of the
exterior points.

With simultaneous link operation, the communication time is the maximum
of the directions communicated, not the sum. In the example in Figure 6, the
communication time will be increased four times by using the method on the
right. However, the horizontal communication is eliminated.

The implication of link doubling for vector hypercubes is simply to reduce
the penalty for such long vectors, permitting a higher fraction of peak
theoretical speed to be attained without degradation by non-overlapped
communication. In the case of the T Series, many two-dimensional problems
appear to be optimally solved by making the subdomains long enough to
span the entire rectangle and thus eliminating the need to communicate at all
across the ends. With link doubling, the two-dimensional problem can be
treated with a one-dimensional interconnect as in Figure 6, where each
nearest-neighbor connection is twice as fast. A unidirectional transfer
currently has an asymptotic speed of 0.691 MBytes/s on the T Series, with
half speed achieved for transfers of length 26 bytes. With link doubling, the
asymptotic speed on one-dimensional topologies is 1.382 MBytes/s, which
brings the ratio of compute speed: link speed down to about 35 : 1 for 64-bit
computations.

Generalization to M-Fold Increases

Suppose the existence of a hypercube node capable of N link
communications, of which K can be simultaneous, and an application
requiring a (K/M)-dimensional nearest-neighbor ensemble, where M divides
K evenly and 1 < M ≤ K. Then a configuration of dimension (N/M) or less
can be configured so that there are M links for every nearest-neighbor
connection, effectively increasing communication speed M-fold in any
single dimension at a time.

The idea of having to change cabling for every application is obviously not
appealing, but that is not the intent here. Hypercubes with many links per
node have typical configurations that use only a fraction of that maximum
number of links. It appears quite practical, therefore, to replicate link
connections to the maximum degree permitted by a configuration; cabling
changes are made when the hypercube is upgraded to more processors, not
from one application to another.

In the case of the T Series, N = 14 and K = 4, and implying M = 2 or M = 4.
The latter case is restricted to the case of a single module (8 processors), but
in fact, one could cable to allow 2.7 MByte/s coupling as shown in Figure 7.

Node
2

Node
0

Node
1

Node
3

Node
4

Node
6

Node
7

Node
5

1,4,7,10

1,4,7,10

1,4,7,10

1,4,7,10

2,5,8,11
2,5,8,11

2,5,8,11

2,5,8,11

3,6,9,12

3,6,9,12

3,6,9,12

3,6,9,12

Figure 7. Link Quadrupling on a 3-Cube

Conclusions

The technique of link doubling on hypercubes allows one to recoup one of
the features of a bus architecture: smaller configurations can have larger
communication bandwidths. Note that this goes completely against the

theology of ensemble architectures, since link doubling does not scale! It is
difficult to resist such increases in bandwidth, however, since the impact on
software appears to be so minor and the additional hardware is very
inexpensive compared to the rest of the system. Link doubling could become
a standard technique for performance improvement on any commercial
hypercube that is available in a wide range of sizes.

