A Radical Approach to Computation with Real Numbers

John Gustafson
A*CRC and NUS

“Unums version 2.0”

Updated June 3, 2016. Acknowledgments to Andrew Shewmaker, Alessandro Bartolucci, and William Kahan for many helpful suggestions and corrections.
Unums 1.0: upward compatible

IEEE Standard Float (64 bits):

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent (scale)</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10001001101</td>
<td>1111111100001010100111110100010101111111010100010011</td>
</tr>
</tbody>
</table>

- Flexible dynamic range
- Flexible precision
- No rounding, overflow, underflow
- No “negative zero”
- Fixes wasted NaN values
- Makes results bit-identical

Unum

(29 bits, in this case):

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exp.</th>
<th>Frac.</th>
<th>Ubit</th>
<th>Exp. Size</th>
<th>Frac. Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11001101</td>
<td>111111100001</td>
<td>1</td>
<td>111</td>
<td>1011</td>
</tr>
</tbody>
</table>

- Variable storage size
- Adds indirection
- Many conditional tests

Self-descriptive “utag” bits track and manage uncertainty, exponent size, and fraction size
What would the *ideal* format be?

- All arithmetic operations equally fast
- No penalty for decimal instead of binary
- Easy to build using current chip technology
- No exceptions (subnormals, NaNs, “negative zero”…)
- *One-to-one*: no redundant representations
- *Onto*: No real numbers overlooked
- Upward compatible with IEEE 754
- Mathematically sound; no rounding errors

IEEE 754 compatibility prevents all the other goals.
Break *completely* from IEEE 754 floats and gain:

- Computation with mathematical rigor
- Robust set representations with a *fixed* number of bits
- 1-clock binary ops with *no* exception cases
- Tractable “exhaustive search” in high dimensions

Strategy: Get ultra-low precision right, *then* work up.
All projective reals, using 2 bits

“±∞” is “the point at infinity” and is unsigned.

Think of it as the reciprocal of zero.
Linear depiction

Maps to the way 2’s complement integers work!

Redundant point at infinity on the right is not shown.
Absence-Presence Bits

0 (open shape) if absent from the set, 1 (filled shape) if present in the set.

Rectangle if exact, oval or circle if inexact (range)

Red if negative, blue if positive

Forms the power set of the four states.

$2^4 = 16$ possible subsets of the extended reals.
Sets become *numeric quantities*

```
The empty set, {}  
All positive reals, \((0, \infty)\)  
Zero, 0  
All nonnegative reals, \([0, \infty)\)  
All negative reals, \((-\infty, 0)\)  
All nonzero reals, \((-\infty, 0) \cup (0, \infty)\)  
All nonpositive reals, \((-\infty, 0]\)  
All reals, \((-\infty, \infty)\)  
The point at infinity, \(\pm \infty\)  
The extended positive reals, \((0, \infty]\)  
The unsigned values, \(0 \cup \pm \infty\)  
The extended nonnegative reals, \([0, \infty]\)  
The extended negative reals, \([-\infty, 0)\)  
All nonzero extended reals \([-\infty, 0) \cup (0, \infty]\)  
The extended nonpositive reals, \([-\infty, 0]\)  
All extended reals, \([-\infty, \infty]\)  
```

“SORNs”: Sets Of Real Numbers

Closed under
\[x + y \quad x - y \quad x \times y \quad x \div y \]
and...\(x^y\)

Tolerates division by 0.

No indeterminate forms.

Very different from *symbolic* ways of dealing with sets.
No more “Not a Number”

\[\sqrt{-1} = \text{empty set: } \emptyset \]

\[0 / 0 = \text{everything: } \{0\} \]

\[\infty - \infty = \text{everything: } \{0\} \]

\[1^\infty = \text{all nonnegatives, } [0, \infty]: \{0\} \]

etc.

Answers, as limit forms, are sets. We can express those!
Op tables need only be 4x4

For any SORN, do table look-up for pairwise bits that are set, and find the union with a bitwise OR.

Hardware flag: independent x and y

Note that three entries “blur”, indicating information loss.
If a variable occurs more than once, only reflexive combinations are needed.

Compiler detects common sub-expressions, so $x + x$ is handled differently from $x + y$.
Now include +1 and −1

The SORN is 8 bits long.

This is actually enough of a number system to be useful!
Example: Robotic Arm Kinematics

12-dimensional nonlinear system (!)

Notice all values must be in $[-1,1]$
“Try everything”... in 12 dimensions

Every variable is in $[-1, 1]$, so split into $[-1, 0)$ and $[0, 1]$ and compute the constraint function to 3-bit accuracy.

- = violates constraints
■ = compliant subset

$2^{12} = 4096$ sub-cubes can be evaluated in parallel, in a few nanoseconds.
One option: more powers of 2

There is nothing special about 2. We could have added 10 and 1/10, or even \(\pi \) and \(1/\pi \), or any exact number.

(Yes, \(\pi \) can be numerically exact, if we want it to be!)
The sign of 0 and \(\pm \infty \) is meaningless, since

\[
0 = -0 \quad \text{and} \quad \pm \infty = -\pm \infty.
\]
Negation is trivial

To negate, flip horizontally.

Reminder: In 2’s complement, flip all bits and add 1, to negate. Works without exception, even for 0 and ±∞. (They do not change.)
A new notation: Unary “/”

Just as unary “−” can be put before x to mean 0 − x, unary “/” can be put before x to mean 1/x.

Just as we can write −x for 0 − x, we can write /x for 1/x.

Pronounce it “over x”

Parsing is just like parsing unary minus signs.

− (−x) = x, just as / (/x) = x.

x − y = x + (−y), just as x ÷ y = x × (/y)

These unum systems are lossless (no rounding error) under negation and reciprocation.

Arithmetic ops + − × ÷ are on equal footing.
Reciprocation is trivial, too!

To reciprocate, flip vertically.

Reverse all bits but the first one and add 1, to reciprocate. Works without exception. +1 and −1 do not change.
The last bit serves as the *ubit*

ubit = 0 means exact
ubit = 1 means the open interval between exact numbers.
“uncertainty bit”.

Example: This means the open interval (½, 1). Or (get used to it), (/2, 1).
Divide by 0 mid-calculation and still get the right answer

What is $1 / (1/x + \frac{1}{2})$ for $-1 < x \leq 2$?

10-unum SORN for $x = (-1, 2]$
lossless SORN for $1/x = [\frac{1}{2}, -1)$

Divide by zero is an ordinary operation.
Add $\frac{1}{2}$, reciprocate again.

- Add $\frac{1}{2}$

- Reciprocate

lossless SORN for $\frac{1}{x} + \frac{1}{2} = [1, -\frac{1}{2})$

lossless SORN for $\frac{1}{(1/x+\frac{1}{2})} = (-2, 1]$
Back to kinematics, with exact 2^k

Split one dimension at a time. Needs only 1600 function evaluations (microseconds).

Display six 2D graphs of c versus s (cosine versus sine… should converge to an arc)

Here is what the rigorous bound looks like after one pass.

Information = /uncertainty.

Uncertainty = answer volume.

Information increases by $1661 \times$
Make a second pass

Still using ultra-low precision

Starting to look like arcs (angle ranges)

457306 function evaluations \((\mu\text{secs, using parallelism})\)

Information increases by a factor of \(3.7 \times 10^6\)
A third pass allows robot decision

Transparency helps show 12 dimensions, 2 at a time.

Starting to look like arcs (angle ranges).

6 million function evaluations (a few msec)

Information increases by a factor of 1.8×10^{11}

Remember, this is a **rigorous bound** of all possible solutions. Gradient-type searching with floats can only **guess**.
Unums 2.0

Still Universal Numbers. They are like the original unums, but:

- Fixed size
- *Not* an extension of IEEE floats
- ULP size variance becomes *sets*
- No redundant representations
- No wasted bit patterns
- No NaN exceptions
- No penalty for using decimals!
- No errors in converting human-readable format to and from machine-readable format.

An example unum set with 1, 2, 5, 10, 20,… as the “lattice”
Time to get serious

What is the best possible use of an 8-bit byte for real-valued calculations?

Start with kindergarten numbers:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Divide by 10 to center the set about 1:
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

This has the classic problem with decimal IEEE floats: “wobbling precision.”
Reciprocal closure cures wobbling precision

Unite set with the reciprocals of the values, guaranteeing closure:

0.1, /9, 0.125, /7, /6, 0.2, 0.25, 0.3, /3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1, /0.9, 1.25, /0.7, /0.6, 2, 2.5, 3, /0.3, 4, 5, 6, 7, 8, 9, 10

That’s 30 numbers. Room for 33 more.
One approach:

“Tapered Precision” reduces relative accuracy for extreme magnitudes, allowing very large dynamic range.

- Define the > 1 lattice points
- Unite with 0
- Unite with reciprocals
- Unite with negatives
- Unite with open intervals; circle is complete
- Populate arithmetic tables
Flat precision makes table generation and fused operations easier.

Imagine: custom number systems for application-specific arithmetic

- A table need only contain entries for one “decade,” 1 to 10
- Power of 10 determined via integer divide, instead of having a separate bit field
A very cool coincidence

Low powers of two: 1, 2, 4, 8, 16.
Low powers of five: 1, 5, 25, 125, 625.
Throw in the square root of ten, $\sqrt{10}$.
Scale to be between 1 and 10, and sort:

1, 1.25, 1.6, 2, 2.5, $\sqrt{10}$, 4, 5, 6.25, 8, 10

So what?

Why learn a weird new way to count from 1 to 10?
Perfect exponential curve; *relative precision* is absolutely flat.
1 decibel $= 10^{1/10} = 1.26\cdots$
Like the “circle of fifths” in music

Made possible by another logarithmic coincidence.

Interval of an octave is 2:1
Interval of a fifth is 3:2

Go up a fifth, twelve times. What is the ratio?

1.5^{12} is almost exactly seven octaves!

The equal-tempered scale is logarithmic, yet closely approximates the ratio of small integer ratios.
Non-negative exact values

0, 0.0008,
0.001, 0.00125, 0.0016, 0.002, 0.0025,
0.001√10, 0.004, 0.005, 0.00625, 0.008,
0.01, 0.0125, 0.016, 0.02, 0.025,
0.01√10, 0.04, 0.05, 0.0625, 0.08,
0.1, 0.125, 0.16, 0.2, 0.25,
0.1√10, 0.4, 0.5, 0.625, 0.8,
1, 1.25, 1.6, 2, 2.5,
√10, 4, 5, 6.25, 8,
10, 12.5, 16, 20, 25,
10√10, 40, 50, 62.5, 80,
100, 125, 160, 200, 250,
100√10, 400, 500, 625, 800, 1000,
1250, √10, 400, 500, 625, 800, 1000,
1250, /0

- With negatives and open ranges, 256 values (1 byte)
- Over six orders of magnitude
- Only one digit precision, but the precision is flat
- Exact decimals, except for √10. (If you don’t like it, ignore it)
Closure plot for multiply, divide

= Exact result
= Inexact
(single ULP range)

Embedded red dots are where the power of 2 and the power of 5 differ by more than 4.
8-bit unum means 256-bit SORN

Ultra-fast parallel arithmetic on arbitrary subsets of the real number line.

Ops can still finish within a single clock cycle, with a tractable number of parallel OR gates.
Only need 16-bit SORN for $+ - \times \div$ ops

Connected sets \textit{remain connected} under $+ - \times \div$, even division by zero!

Run-length encoding of a contiguous block of 1s amongst 256 bits only takes \textbf{16 bits}.

\begin{itemize}
 \item 00000000 00000000 means all 256 bits are 0s
 \item xxxxxxxxxx 00000000 means all 256 bits are 1s (if any x is nonzero)
 \item 00000010 00000110 means there is a block of 2 1s starting at position 6
\end{itemize}

Trivial logic still serves to negate and reciprocate compressed form of value.
In 1959, IBM introduced its 1620 Model 1 computer, internal nickname “CADET.”

All math was by *table look-up.*

Customers decided CADET stood for “Can’t Add, Doesn’t Even Try.”
Table look-up requires ROM

- Read-Only Memory needs very few *transistors*. ~3x denser than DRAM, ~14x denser than SRAM.
- Billions of ROM bits per chip is easy.
- Imagine the *speed*… all operations take 1 clock! Even \(x^y\).
- 1-op-per clock architectures are much easier to build.
- Single argument-operations require tiny tables. Trig, exp, you name it.

Low-precision *rigorous* math is possible at 100x the speed of sloppy IEEE floats.
Cost of $+ - \times \div$ tables (naïve)

- Addition table: 256×256 entries, 2-byte entries = 128 kbytes
- Symmetry cuts that in half, if we sort x and y inputs so $x \leq y$. Other economizations are easy to find.
- Subtraction table: just reflect the addition table
- Multiplication table: same size as addition table
- Division table: just reflect the multiplication table!
- Estimated chip cost: $< 0.01 \text{ mm}^2$, $< 1 \text{ milliwatts}$

128 kbytes total for all four basic ops. Another 64 kbytes if we also table x^y.
What about, you know, decent precision? Is 3 decimals enough?

IEEE half-precision (16 bits) has ~3 decimal accuracy
9 orders of magnitude, 6×10^{-5} to 6×10^4.
Many bit patterns wasted on NaN, negative zero, etc.
Can a 16-bit unum do better, and actually express decimals exactly?

65536 bit patterns. 8192 in the “lattice”.
Start with set = \{1.00, 1.01, 1.02, …, 9.99\}.
Unite with reciprocals.
While set size < 16384:
 unite with $10 \times$ set.
Clip to 16384 elements centered at 1.00
Unite with negatives.
Unite with open intervals between exacts.
What is the dynamic range?
Answer: \(9^+\) orders of magnitude

\[
/0.389 \times 10^{-5} \text{ to } 0.389 \times 10^5
\]

This is 1.5 times larger than the range for IEEE half-precision floats.

This is the Mathematica code for generating the number system.

Notice: no “gradual underflow” issues to deal with. No subnormal numbers.
IEEE Intervals vs. SORNs

• Interval arithmetic with IEEE 16-bit floats takes 32 bits
 • Only 9 orders of magnitude dynamic range
 • NaN exceptions, no way to express empty set
 • Requires rare expertise to use; nonstandard methods
 • Uncertainty grows exponentially in general (or worse)

• SORN arithmetic with connected sets takes 32 bits
 • Over 9 orders of magnitude dynamic range
 • No indeterminate forms; closed under $+ - \times \div$
 • Automatic control of information loss
 • Uncertainty grows linearly in general
Why unums don’t have the interval arithmetic problem

Intervals: Each step starts from the interval produced in the previous step.
⇒ Bounds grow *exponentially*

Unums: Each stage of a calculation starts with values that are either *exact* or one *ULP wide*, and then takes the *union* of the results.
⇒ Bounds grow *linearly*.

Unum *n*-body calculation shows slow, linear expansion of bound.

Intervals cannot do this.
“Dependency Problem” ruins interval arithmetic results

“Let \(x = [2, 4]\). Repeat several times: \(x \leftarrow x - x\); Print \(x\).”

<table>
<thead>
<tr>
<th>Intervals (128 bits):</th>
</tr>
</thead>
<tbody>
<tr>
<td>([-2, 2])</td>
</tr>
<tr>
<td>([-4, 4])</td>
</tr>
<tr>
<td>([-8, 8])</td>
</tr>
<tr>
<td>([-16, 16])</td>
</tr>
<tr>
<td>([-32, 32])</td>
</tr>
<tr>
<td>([-64, 64])</td>
</tr>
<tr>
<td>([-128, 128])</td>
</tr>
</tbody>
</table>

Unstable. The uncertainty feeds on itself, so interval widths grow exponentially.

<table>
<thead>
<tr>
<th>SORNs (8-bit unums):</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-1, 1))</td>
</tr>
<tr>
<td>((-0.2, 0.2))</td>
</tr>
<tr>
<td>((-0.04, 0.04))</td>
</tr>
<tr>
<td>((-0.01, 0.01))</td>
</tr>
<tr>
<td>((-0.002, 0.002))</td>
</tr>
<tr>
<td>((-0.0004, 0.0004))</td>
</tr>
<tr>
<td>((-0.0008, 0.0008))</td>
</tr>
</tbody>
</table>

Stable. Converges to the smallest open interval containing zero.
Another classic example of “the Dependency Problem”

“Let $x = [2, 4]$. Repeat several times: $x \leftarrow x / x$; Print x."

<table>
<thead>
<tr>
<th>Intervals:</th>
<th>SORNs (8-bit unums):</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[1/2, 2]$</td>
<td>$(0.625, 1.6)$</td>
</tr>
<tr>
<td>$[1/4, 4]$</td>
<td>$(0.625, 1.6)$</td>
</tr>
<tr>
<td>$[1/16, 16]$</td>
<td>$(0.625, 1.6)$</td>
</tr>
<tr>
<td>$[1/256, 256]$</td>
<td>$(0.625, 1.6)$</td>
</tr>
<tr>
<td>$[1/65536, 65536]$</td>
<td>$(0.625, 1.6)$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Unstable. Again, the interval widths grow very rapidly.

Stable. Contains the correct value, 1, despite only single-digit accuracy.
Why it works

Divide x by x, for each unum whose presence bit is set. (Ideally, do these in parallel.)

- $0.5 / 0.5 = 1$
- $(0.5, 0.625) / (0.5, 0.625) = (0.8, 1.25)$
- $0.625 / 0.625 = 1$
- $(0.625, 0.8) / (0.625, 0.8) = (0.78125, 1.28)$
- $0.8 / 0.8 = 1$
- $(0.8, 1) / (0.8, 1) = (0.8, 1.25)$
- $1 / 1 = 1$
- $(1, 1.25) / (1, 1.25) = (0.8, 1.25)$
- $1.25 / 1.25 = 1$
- $(1.25, 1.6) / (1.25, 1.6) = (0.78125, 1.28)$
- $1.6 / 1.6 = 1$
- $(1.6, 2) / (1.6, 2) = (0.8, 1.25)$
- $2 / 2 = 1$

OR the SORN bits to form the union: $= (0.625, 1.6)$

Compiler sets the hardware mode to “dependent” so all table look-ups are reflexive, not all-to-all.
Future Directions

- Create 32-bit and 64-bit unums with new approach; table look-up still practical?
- Compare with IEEE single and double
- General SORNs need run-length encoding.
- Build C, D, Julia, Python versions of the arithmetic
- Test on various workloads, like
 - Deep learning
 - \(N\)-body
 - Ray tracing
 - FFTs
 - Linear algebra done right (complete answer, not sample answer)
 - Other large dynamics problems
Summary

A complete break from IEEE floats *may be worth the disruption*.

• Makes every bit count, saving storage/bandwidth, energy/power
• Mathematically superior in every way, as sound as integers
• Rigor without the overly pessimistic bounds of interval arithmetic

This is a path beyond exascale.