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Unums 1.0: upward compatible 

Flexible dynamic range 
Flexible precision 
No rounding, overflow, underflow 
No “negative zero” 
Fixes wasted NaN values 
Makes results bit-identical 

BUT: 
Variable storage size 
Adds indirection 
Many conditional tests  

Unum 
(29 bits, in this case): 

Self-descriptive “utag” bits track 
and manage uncertainty, exponent 
size, and fraction size 

0

sign exp. frac. ubit exp. size frac. size 

utag 

11001101 111111100001 1 111 1011

IEEE Standard Float (64 bits): 

0

sign exponent (scale) fraction 

10001001101 1111111000010101010011110100010101111110101000010011



3 

What would the ideal format be? 

•  All arithmetic operations equally fast 
•  No penalty for decimal instead of binary 
•  Easy to build using current chip technology 
•  No exceptions (subnormals, NaNs, “negative zero”…) 
•  One-to-one: no redundant representations 
•  Onto: No real numbers overlooked 
•  Upward compatible with IEEE 754 
•  Mathematically sound; no rounding errors 

IEEE 754 compatibility prevents all the other goals. 
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Break completely from 
IEEE 754 floats and gain: 
•  Computation with mathematical rigor 
•  Robust set representations with a fixed number of bits 
•  1-clock binary ops with no exception cases 
•  Tractable “exhaustive search” in high dimensions 

Strategy: Get ultra-low precision right, then work up. 
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All projective reals, using 2 bits 

“±∞” is “the point 
at infinity” and is 
unsigned. 
 
Think of it as the 
reciprocal of zero.  

00

01

10

11

±∞ 

0 

+ – 
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Linear depiction 

Maps to the way 2’s complement integers work! 
 

Redundant point at infinity on the right is not shown.  

exact 
0 

all positive reals 
(0, ∞) 

all negative reals 
(–∞, 0) 

00 01

±∞ 

10 11
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Absence-Presence Bits 
0 (open shape) if absent 
from the set, 
1 (filled shape) if present in 
the set. 
 
Rectangle if exact, oval or 
circle if inexact (range) 
 
Red if negative, blue if 
positive Forms the power set of 

the four states. 
24 = 16 possible subsets 

of the extended reals. 

00

⬆︎!
or 
⬇ 

0 

01

⬆︎!
or 
⬇ 

(0, ∞) 

11

⬆︎!
or 
⬇ 

(–∞, 0) 

10

⬆︎!
or 
⬇︎ 

±∞ 
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Sets become numeric quantities 

Closed under 
x + y  x – y 
x × y  x ÷ y 
 and… xy 

Tolerates division by 0. 
 
No indeterminate 
forms. 
 

Very different from 
symbolic ways of 
dealing with sets. 

“SORNs”: Sets Of Real Numbers 

The extended positive reals, (0, ∞] 

All nonzero extended reals [–∞, 0) ∪ ( 0, ∞]  

All nonzero reals, (–∞, 0) ∪ (0, ∞) 

All nonpositive reals, (–∞, 0]  

All reals, (–∞, ∞) 

The point at infinity, ±∞ 

The unsigned values, 0 ∪ ±∞ 

The extended nonnegative reals, [0, ∞] 

The extended negative reals, [–∞, 0) 

The extended nonpositive reals, [–∞, 0] 

All extended reals, [–∞, ∞] 

All negative reals, (–∞, 0) 

All nonnegative reals, [0, ∞)  

Zero, 0 

All positive reals (0, ∞) 

The empty set, { } 
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No more “Not a Number” 

√–1 = empty set: 

0 / 0 = everything: 

∞ – ∞ = everything: 

1∞ = all nonnegatives, [0, ∞]: 

etc. 

Answers, as limit forms, are sets. 
We can express those! 
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Op tables need only be 4x4 
For any SORN, do table 
look-up for pairwise bits 
that are set, and find the 
union with a bitwise OR. 

+ 

parallel 
OR 

+ 

Note that three entries “blur”, 
indicating information loss. 

Hardware flag: independent x and y 
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Compiler-Hardware Interaction 
If a variable occurs more 
than once, only reflexive 

combinations are 
needed. 

+ 

parallel 
OR 

Compiler detects  common 
sub-expressions, so x + x is 
handled differently from x + y 

+ 
Hardware flag: dependent x and y. (y = x) 
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Now include +1 and –1 

The SORN is 8 
bits long. 
 
This is actually 
enough of a 
number system 
to be useful! 

000

010

100

110

±∞ 

0 

+1 –1 

001111

011101

(0,1) 

(1,∞) (–∞,–1) 

(–1,0) 
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Example: Robotic Arm Kinematics 

12-dimensional 
nonlinear system (!) 

Notice all values 
must be in [–1,1]  " 
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“Try everything”… in 12 dimensions 

Every variable is in [–1, 1], so 
split into [–1, 0) and [0, 1] and 
compute the constraint function 
to 3-bit accuracy. 
 
# = violates constraints!
# = compliant subset!
 
212 = 4096 sub-cubes can be 
evaluated in parallel, in a few 
nanoseconds. 



15 

One option: more powers of 2 
There is nothing 
special about 2. We 
could have added 
10 and 1/10, or 
even π and 1/π, or 
any exact number. 
 
(Yes, π can be 
numerically exact, if 
we want it to be!) 0000

0100

1000

1100

±∞ 

0 

1 –1 

00101110

01101010

1/2 

2 –2 

–1/2 

0001

0011

0101

01111001

1011

1101

1111
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Note: sign bit is in the usual place 

The sign of 0 
and ±∞ is 
meaningless, 
since 
 
0 = –0 and 
±∞ = –±∞. 

0000

0100

1000

1100

0 

1 –1 

00101110

01101010

1/2 

2 –2 

–1/2 

0001

0011

0101

01111001

1011

1101

1111

±∞ 
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Negation is trivial 

To negate, flip 
horizontally.  
 
 
Reminder: In 2’s 
complement, flip all 
bits and add 1, to 
negate. Works without 
exception, even for 0 
and ±∞. (They do not 
change.) 

0000

1000

1100

0 

1 –1 

00101110

01101010

1/2 

2 –2 

–1/2 

0001

0011

0101

01111001

1011

1101

1111

0100

±∞ 
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A new notation: Unary “/” 
Just as unary “–” can be put before x to mean 0 – x, 

unary “/” can be put before x to mean 1/x. 
 

Just as we can write –x for 0 – x, we can write /x for 1/x. 
Pronounce it “over x” 

 

Parsing is just like parsing unary minus signs. 
 

– (–x) = x, just as / (/x) = x. 
x – y = x + (–y), just as x ÷ y = x × (/y) 

 
These unum systems are lossless (no rounding 

error) under negation and reciprocation. 
 

Arithmetic ops  + – × ÷  are on equal footing. 
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Reciprocation is trivial, too! 
To reciprocate, flip 
vertically.  
 
 
 
Reverse all bits but 
the first one and add 
1, to reciprocate. 
Works without 
exception. +1 and –1 
do not change. 

0000

1000

1100

0 

1 –1 

00101110

01101010

/2 

2 –2 

–/2 

0001

0011

0101

01111001

1011

1101

1111

0100

/0 
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The last bit serves as the ubit 
ubit = 0 means 
exact 
ubit = 1 means 
the open interval 
between exact 
numbers. 
“uncertainty bit”. 

0000

0100

1000

1100

/0 

0 

1 –1 

00101110

01101010

/2 

2 –2 

–/2 

0001

0011

0101

01111001

1011

1101

1111 Example: This means the 
open interval (½, 1). Or (get 
used to it), (/2, 1). 
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Divide by 0 mid-calculation 
and still get the right answer 

What is 1 / (1/x + ½) for –1 < x ≤ 2? 

lossless SORN 
for 1/x = [½, –1) 

10-unum SORN 
for x = (–1, 2] 

/0 

0 

1 –1 

/2 

2 –2 

–/2 

/0 

0 

1 –1 

/2 

2 –2 

–/2 

Divide by zero is an ordinary operation. 
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Add ½, reciprocate again 

lossless SORN 
for 1/x + ½  = [1, –½) 

/0 

0 

1 –1 

/2 

2 –2 

–/2 

Add ½  

lossless SORN 
for 1/(1/x+½) = (–2, 1] 

/0 

0 

1 –1 

/2 

2 –2 

–/2 

Reciprocate 
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Back to kinematics, with exact 2k 

Split one dimension at a time. 
Needs only 1600 function 
evaluations (microseconds). 

Display six 2D graphs of c 
versus s (cosine versus sine… 
should converge to an arc) 

Here is what the rigorous 
bound looks like after 
one pass. 

Information = /uncertainty. 

Uncertainty = answer volume. 

Information increases by 1661× 
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Make a second pass 

Still using ultra- 
low precision 
Starting to look 
like arcs 
(angle ranges) 
457306 function 
evaluations  (µsecs,using parallelism) 
Information increases by a factor of 3.7×106 
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A third pass allows robot decision 

Transparency helps 
show 12 dimensions, 
2 at a time. 

Starting to look like arcs 
(angle ranges). 

6 million function 
evaluations (a few msec) 

Information increases 
by a factor of 1.8×1011 

Remember, this is a rigorous bound of all possible solutions. 
Gradient-type searching with floats can only guess. 
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Unums 2.0 
Still Universal Numbers. They 
are like the original unums, but: 
 
•  Fixed size 
•  Not  an extension of IEEE 

floats 
•  ULP size variance becomes 

sets 
•  No redundant representations 
•  No wasted bit patterns 
•  No NaN exceptions 
•  No penalty for using decimals! 
•  No errors in converting 

human-readable format to 
and from machine-readable 
format. 

An example 
unum set 
with 1, 2, 5, 
10, 20,… as 
the “lattice”   

26 
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Time to get serious 
What is the best possible use of an 8-bit byte for real-valued calculations? 

Start with kindergarten numbers: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 
 
Divide by 10 to center the set about 1: 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,  
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
 
This has the classic problem with decimal 
IEEE floats: “wobbling precision.” 

Deviations from smooth 
exponential lead to 
information loss 

set member 

value 
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Reciprocal closure cures 
wobbling precision 

Unite set with the reciprocals of 
the values, guaranteeing closure: 
 
0.1, /9, 0.125, /7, /6, 0.2, 0.25, 
0.3, /3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
 
1, /0.9, 1.25, /0.7, /0.6, 2, 2.5,  
3, /0.3, 4, 5, 6, 7, 8, 9, 10 
 
That’s 30 numbers. Room for 33 
more. 

set 
member 

value 

No “kinks”! 
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One approach: 
 
“Tapered Precision” 
reduces relative 
accuracy for 
extreme 
magnitudes, 
allowing very large 
dynamic range. 

1

/0.9

1.25

/0.7

/0.6

2

2.5

3
/0.3

4
5

6
7

8
9

10
12.5

20
25

40
50

80

10
00

010
6

10
10

10
20

10
50

10
10

0/0

•  Define the > 1 lattice points 
•  Unite with 0 
•  Unite with reciprocals 
•  Unite with negatives 
•  Unite with open intervals; 

circle is complete 
•  Populate arithmetic tables 
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Flat precision 
makes table 
generation and 
fused operations 
easier. 
 
Imagine: custom 
number systems for 
application-specific 
arithmetic 

1

/0.9

1.25

/0.7

/0.6

2

2.5

3
/0.3

4
5

6
7

8
9

10

6070809010
0

/0
.0

09
/0

•  A table need only contain 
entries for one “decade,” 
1 to 10 

•  Power of 10 determined 
via integer divide, instead 
of having a separate bit 
field 
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A very cool coincidence 

Low powers of two: 1, 2, 4, 8, 16. 
Low powers of five: 1, 5, 25, 125, 625. 
Throw in the square root of ten, √10. 
Scale to be between 1 and 10, and sort: 

1, 1.25, 1.6, 2, 2.5, √10, 4, 5, 6.25, 8, 10 

So what? 
 

Why learn a weird new way 
to count from 1 to 10? 
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Perfect exponential curve; 
relative precision is absolutely flat. 
1 decibel = 101/10 = 1.26… 

10 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

lattice point, counting up from zero 

Represented value 

1 

1.25 

1.26… 

2 

1.6 

1.58… 

3 

2 

2.00… 

4 

2.5 

2.51… 

5 

√10 

√10 

6 

4 

3.98… 

7 

5 

5.01… 

8 

6.25 

6.31… 

9 

8 

7.94… 

10 

10 

10 

0 

1 

1 
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Like the “circle of fifths” in music 

Made possible by another 
logarithmic coincidence. 
 
Interval of an octave is 2:1 
Interval of a fifth is 3:2 
 
Go up a fifth, twelve times. 
What is the ratio? 
 
1.512 is almost exactly 
seven octaves! 
 
The equal-tempered scale 
is logarithmic, yet closely 
approximates the ratio of 
small integer ratios. 
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Non-negative exact values 
0, 0.0008, 

0.001, 0.00125, 0.0016, 0.002, 0.0025, 
0.001√10, 0.004, 0.005, 0.00625, 0.008, 

0.01, 0.0125, 0.016, 0.02, 0.025, 
0.01√10, 0.04, 0.05, 0.0625, 0.08, 

0.1, 0.125, 0.16, 0,2 , 0.25, 
0.1√10, 0.4, 0.5, 0.625, 0.8, 

1, 1.25, 1.6, 2 , 2.5, 
√10, 4, 5, 6.25, 8, 

10, 12.5, 16, 20 , 25, 
10√10, 40, 50, 62.5, 80, 

100, 125, 160, 200, 250, 
100√10, 400, 500, 625, 800, 1000, 

1250, /0 

•  With negatives and 
open ranges, 256 
values (1 byte) 

•  Over six orders of 
magnitude 

•  Only one digit 
precision, but the 
precision is flat 

•  Exact decimals, 
except for √10. (If 
you don’t like it, 
ignore it) 
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Closure plot for multiply, divide 

 ● = Exact result 
 ● = Inexact 

(single ULP range) 
 
Embedded ● are 
where the power of 2 
and the power of 5 
differ by more than 4. 
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8-bit unum means 256-bit SORN 

Ultra-fast parallel arithmetic on arbitrary subsets 
of the real number line. 

 
Ops can still finish within a single clock cycle, 
with a tractable number of parallel OR gates. 

0 (maxreal, ∞) 

10000000

±∞ 
11000000 01000000 1111111100000000

… … 

… … 

1 –1 
… … 

… … 

64 bits 64 bits 64 bits 64 bits 

unums: 

SORN: 
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Only need 16-bit SORN 
for + – × ÷ ops 
Connected sets remain connected under + – × ÷ , 
even division by zero!  

Run-length encoding of a contiguous block of 1s 
amongst 256 bits only takes 16 bits. 

00000000 00000000 means all 256 bits are 0s 
xxxxxxxx 00000000 means all 256 bits are 1s (if any x is nonzero) 
00000010 00000110 means there is a block of 2 1s starting at position 6 

2 6 

Trivial logic still serves to negate and reciprocate 
compressed form of value. 
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Table look-up background 
In 1959, IBM 
introduced its 
1620 Model 1 
computer, 
internal 
nickname 
“CADET.” 
 
All math was by 
table look-up. 
 
Customers 
decided CADET 
stood for “Can’t 
Add, Doesn’t 
Even Try.” 
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Table look-up requires ROM 

Low-precision rigorous 
math is possible at 100x 
the speed of sloppy IEEE 

floats.  

•  Read-Only Memory needs 
very few transistors. ~3x 
denser than DRAM, ~14x 
denser than SRAM. 

•  Billions of ROM bits per 
chip is easy. 

•  Imagine the speed… all 
operations take 1 clock! 
Even xy. 

•  1-op-per clock 
architectures are much 
easier to build. 

•  Single argument-operations 
require tiny tables. Trig, 
exp, you name it. 

x unum y unum 

SORN for x + y 

88 CMOS transistors for ROM 
versus 280 for DRAM, 

1,240 for SRAM 
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Cost of + – × ÷ tables (naïve) 
•  Addition table: 256×256 entries, 2-byte entries = 

128 kbytes 
•  Symmetry cuts that in half, if we sort x and y inputs 

so x ≤ y. Other economizations are easy to find. 
•  Subtraction table: just reflect the addition table 
•  Multiplication table: same size as addition table 
•  Division table: just reflect the multiplication table! 
•  Estimated chip cost: < 0.01 mm2, < 1 milliwatts 

128 kbytes total for all four basic ops. 
Another 64 kbytes if we also table xy. 
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What about, you know, decent 
precision? Is 3 decimals enough? 

IEEE half-precision (16 bits) has ~3 decimal accuracy 
9 orders of magnitude, 6×10–5 to 6×104. 
Many bit patterns wasted on NaN, negative zero, etc. 
Can a 16-bit unum do better, and actually express decimals exactly? 

0000000000000000

0100000000000000

1000000000000000

1100000000000000

/0

0

+1–1

65536 bit patterns. 8192 in the “lattice”. 
Start with set = {1.00,1.01, 1.02,…, 9.99}. 
Unite with reciprocals. 
While set size < 16384: 

 unite with 10× set. 
Clip to 16384 elements centered at 1.00 
Unite with negatives. 
Unite with open intervals between exacts. 
What is the dynamic range? 
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Answer: 9+ orders of magnitude 

/0.389×10–5 to 0.389×105 

This is the 
Mathematica code for 
generating the number 
system. 
 
Notice: no “gradual 
underflow” issues to 
deal with. No 
subnormal numbers. 

This is 1.5 times larger than the range for IEEE half-precision floats.  
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IEEE Intervals vs. SORNs 
•  Interval arithmetic with IEEE 16-bit floats takes 32 bits 

•  Only 9 orders of magnitude dynamic range 
•  NaN exceptions, no way to express empty set 
•  Requires rare expertise to use; nonstandard methods 
•  Uncertainty grows exponentially in general (or worse) 

 
•  SORN arithmetic with connected sets takes 32 bits 

•  Over 9 orders of magnitude dynamic range 
•  No indeterminate forms; closed under + – × ÷ 
•  Automatic control of information loss 
•  Uncertainty grows linearly in general 
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Why unums don’t have the 
interval arithmetic problem 
Intervals: Each step starts from the 
interval produced in the previous 
step. 
⇒ Bounds grow exponentially 
 
Unums: Each stage of a calculation 
starts with values that are either 
exact or one ULP wide, and then 
takes the union of the results. 
⇒ Bounds grow linearly. 

Unum n-body 
calculation 
shows slow, 
linear expansion 
of bound. 
 
Intervals cannot 
do this. 
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“Dependency Problem” ruins 
interval arithmetic results 
“Let x = [2, 4]. Repeat several times: x ← x – x; Print x.”  

Intervals (128 bits): 
 

[–2, 2] 
[–4, 4] 
[–8, 8] 

[–16, 16] 
[–32, 32] 
[–64, 64] 

[–128, 128] 
 

Unstable. The uncertainty 
feeds on itself, so interval 
widths grow exponentially. 

SORNs (8-bit unums): 
 

(–1, 1) 
(–0.2, 0.2) 

(–0.04, 0.04) 
(–0.01, 0.01) 

(–0.002, 0.002) 
(–0.0004, 0.0004) 
(–0.0008, 0.0008) 

 
Stable. Converges to the 

smallest open interval 
containing zero. 
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Another classic example of 
“the Dependency Problem” 
“Let x = [2, 4]. Repeat several times: x ← x / x; Print x.”  

Intervals: 
 

[1/2, 2] 
[1/4, 4] 

[1/16, 16] 
[1/256, 256] 

[1/65536, 65536] 
⋮ 
 

Unstable. Again, the 
interval widths grow 

very rapidly. 

SORNs (8-bit unums): 
 

(0.625, 1.6) 
(0.625, 1.6) 
(0.625, 1.6) 
(0.625, 1.6) 
(0.625, 1.6) 

⋮ 
 

Stable. Contains the 
correct value, 1, despite 
only single-digit accuracy 
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Why it works 
0 (1250, /0) /0 1 –1 0.5 2 

… … 
Divide x by x, for each unum 
whose presence bit is set. 
(Ideally, do these in parallel.) 

x is [1/2, 2] 

0.5 / 0.5 = 1 

0.625 / 0.625 = 1 
(0.5, 0.625) / (0.5, 0.625) = (0.8, 1.25) 

(0.625, 0.8) / (0.625, 0.8) = (0.78125, 1.28)➧(0.625, 1.6) 
0.8 / 0.8 

(0.8, 1) / (0.8, 1) 
1 / 1 

(1, 1.25) / (1, 1.25) 
1.25 / 1.25 

(1.25, 1.6) / (1.25, 1.6) 
1.6 / 1.6 

(1.6, 2) / (1.6, 2) 
2 / 2 

= 1 
= (0.8, 1.25) 
= 1 
= (0.8, 1.25) 
= 1 
= (0.78125, 1.28)➧(0.625, 1.6) 
= 1 
= (0.8, 1.25) 
= 1 

OR the SORN bits to form the union: = (0.625, 1.6) 

Compiler 
sets the 
hardware 
mode to 
“dependent” 
so all table 
look-ups are 
reflexive, 
not all-to-all. 
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Future Directions 
•  Create 32-bit and 64-bit unums with new approach; table 

look-up still practical? 
•  Compare with IEEE single and double 
•  General SORNs need run-length encoding. 
•  Build C, D, Julia, Python versions of the arithmetic 
•  Test on various workloads, like 

•  Deep learning 
•  N-body 
•  Ray tracing 
•  FFTs 
•  Linear algebra done right (complete answer, not sample answer) 
•  Other large dynamics problems 
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Summary 
A complete break from IEEE floats may be 
worth the disruption. 
 
•  Makes every bit count, saving 

storage/bandwidth, 
energy/power 

•  Mathematically superior in every 
way, as sound as integers 

•  Rigor without the overly pessimistic 
bounds of interval arithmetic 

/0 

0 

1 –1 

This is a path beyond exascale. 


