
1

{

A Radical Approach to
Computation with Real Numbers

John Gustafson
A*CRC and NUS ±∞

0

+ –
“Unums version 2.0”

Updated June 3, 2016. Acknowledgments to Andrew Shewmaker,
Alessandro Bartolucci, and William Kahan for many helpful suggestions and corrections

2

Unums 1.0: upward compatible

Flexible dynamic range
Flexible precision
No rounding, overflow, underflow
No “negative zero”
Fixes wasted NaN values
Makes results bit-identical

BUT:
Variable storage size
Adds indirection
Many conditional tests

Unum
(29 bits, in this case):

Self-descriptive “utag” bits track
and manage uncertainty, exponent
size, and fraction size

0

sign exp. frac. ubit exp. size frac. size

utag

11001101 111111100001 1 111 1011

IEEE Standard Float (64 bits):

0

sign exponent (scale) fraction

10001001101 1111111000010101010011110100010101111110101000010011

3

What would the ideal format be?

•  All arithmetic operations equally fast
•  No penalty for decimal instead of binary
•  Easy to build using current chip technology
•  No exceptions (subnormals, NaNs, “negative zero”…)
•  One-to-one: no redundant representations
•  Onto: No real numbers overlooked
•  Upward compatible with IEEE 754
•  Mathematically sound; no rounding errors

IEEE 754 compatibility prevents all the other goals.

4

Break completely from
IEEE 754 floats and gain:
•  Computation with mathematical rigor
•  Robust set representations with a fixed number of bits
•  1-clock binary ops with no exception cases
•  Tractable “exhaustive search” in high dimensions

Strategy: Get ultra-low precision right, then work up.

5

All projective reals, using 2 bits

“±∞” is “the point
at infinity” and is
unsigned.

Think of it as the
reciprocal of zero.

00

01

10

11

±∞

0

+ –

6

Linear depiction

Maps to the way 2’s complement integers work!

Redundant point at infinity on the right is not shown.

exact
0

all positive reals
(0, ∞)

all negative reals
(–∞, 0)

00 01

±∞

10 11

7

Absence-Presence Bits
0 (open shape) if absent
from the set,
1 (filled shape) if present in
the set.

Rectangle if exact, oval or
circle if inexact (range)

Red if negative, blue if
positive Forms the power set of

the four states.
24 = 16 possible subsets

of the extended reals.

00

⬆︎!
or
⬇

0

01

⬆︎!
or
⬇

(0, ∞)

11

⬆︎!
or
⬇

(–∞, 0)

10

⬆︎!
or
⬇︎

±∞

8

Sets become numeric quantities

Closed under
x + y x – y
x × y x ÷ y
 and… xy

Tolerates division by 0.

No indeterminate
forms.

Very different from
symbolic ways of
dealing with sets.

“SORNs”: Sets Of Real Numbers

The extended positive reals, (0, ∞]

All nonzero extended reals [–∞, 0) ∪ (0, ∞]

All nonzero reals, (–∞, 0) ∪ (0, ∞)

All nonpositive reals, (–∞, 0]

All reals, (–∞, ∞)

The point at infinity, ±∞

The unsigned values, 0 ∪ ±∞

The extended nonnegative reals, [0, ∞]

The extended negative reals, [–∞, 0)

The extended nonpositive reals, [–∞, 0]

All extended reals, [–∞, ∞]

All negative reals, (–∞, 0)

All nonnegative reals, [0, ∞)

Zero, 0

All positive reals (0, ∞)

The empty set, { }

9

No more “Not a Number”

√–1 = empty set:

0 / 0 = everything:

∞ – ∞ = everything:

1∞ = all nonnegatives, [0, ∞]:

etc.

Answers, as limit forms, are sets.
We can express those!

10

Op tables need only be 4x4
For any SORN, do table
look-up for pairwise bits
that are set, and find the
union with a bitwise OR.

+

parallel
OR

+

Note that three entries “blur”,
indicating information loss.

Hardware flag: independent x and y

11

Compiler-Hardware Interaction
If a variable occurs more
than once, only reflexive

combinations are
needed.

+

parallel
OR

Compiler detects common
sub-expressions, so x + x is
handled differently from x + y

+
Hardware flag: dependent x and y. (y = x)

12

Now include +1 and –1

The SORN is 8
bits long.

This is actually
enough of a
number system
to be useful!

000

010

100

110

±∞

0

+1 –1

001111

011101

(0,1)

(1,∞) (–∞,–1)

(–1,0)

13

Example: Robotic Arm Kinematics

12-dimensional
nonlinear system (!)

Notice all values
must be in [–1,1] "

14

“Try everything”… in 12 dimensions

Every variable is in [–1, 1], so
split into [–1, 0) and [0, 1] and
compute the constraint function
to 3-bit accuracy.

= violates constraints!
= compliant subset!

212 = 4096 sub-cubes can be
evaluated in parallel, in a few
nanoseconds.

15

One option: more powers of 2
There is nothing
special about 2. We
could have added
10 and 1/10, or
even π and 1/π, or
any exact number.

(Yes, π can be
numerically exact, if
we want it to be!) 0000

0100

1000

1100

±∞

0

1 –1

00101110

01101010

1/2

2 –2

–1/2

0001

0011

0101

01111001

1011

1101

1111

16

Note: sign bit is in the usual place

The sign of 0
and ±∞ is
meaningless,
since

0 = –0 and
±∞ = –±∞.

0000

0100

1000

1100

0

1 –1

00101110

01101010

1/2

2 –2

–1/2

0001

0011

0101

01111001

1011

1101

1111

±∞

17

Negation is trivial

To negate, flip
horizontally.

Reminder: In 2’s
complement, flip all
bits and add 1, to
negate. Works without
exception, even for 0
and ±∞. (They do not
change.)

0000

1000

1100

0

1 –1

00101110

01101010

1/2

2 –2

–1/2

0001

0011

0101

01111001

1011

1101

1111

0100

±∞

18

A new notation: Unary “/”
Just as unary “–” can be put before x to mean 0 – x,

unary “/” can be put before x to mean 1/x.

Just as we can write –x for 0 – x, we can write /x for 1/x.
Pronounce it “over x”

Parsing is just like parsing unary minus signs.

– (–x) = x, just as / (/x) = x.
x – y = x + (–y), just as x ÷ y = x × (/y)

These unum systems are lossless (no rounding

error) under negation and reciprocation.

Arithmetic ops + – × ÷ are on equal footing.

19

Reciprocation is trivial, too!
To reciprocate, flip
vertically.

Reverse all bits but
the first one and add
1, to reciprocate.
Works without
exception. +1 and –1
do not change.

0000

1000

1100

0

1 –1

00101110

01101010

/2

2 –2

–/2

0001

0011

0101

01111001

1011

1101

1111

0100

/0

20

The last bit serves as the ubit
ubit = 0 means
exact
ubit = 1 means
the open interval
between exact
numbers.
“uncertainty bit”.

0000

0100

1000

1100

/0

0

1 –1

00101110

01101010

/2

2 –2

–/2

0001

0011

0101

01111001

1011

1101

1111 Example: This means the
open interval (½, 1). Or (get
used to it), (/2, 1).

21

Divide by 0 mid-calculation
and still get the right answer

What is 1 / (1/x + ½) for –1 < x ≤ 2?

lossless SORN
for 1/x = [½, –1)

10-unum SORN
for x = (–1, 2]

/0

0

1 –1

/2

2 –2

–/2

/0

0

1 –1

/2

2 –2

–/2

Divide by zero is an ordinary operation.

22

Add ½, reciprocate again

lossless SORN
for 1/x + ½ = [1, –½)

/0

0

1 –1

/2

2 –2

–/2

Add ½

lossless SORN
for 1/(1/x+½) = (–2, 1]

/0

0

1 –1

/2

2 –2

–/2

Reciprocate

23

Back to kinematics, with exact 2k

Split one dimension at a time.
Needs only 1600 function
evaluations (microseconds).

Display six 2D graphs of c
versus s (cosine versus sine…
should converge to an arc)

Here is what the rigorous
bound looks like after
one pass.

Information = /uncertainty.

Uncertainty = answer volume.

Information increases by 1661×

24

Make a second pass

Still using ultra-
low precision
Starting to look
like arcs
(angle ranges)
457306 function
evaluations (µsecs,using parallelism)
Information increases by a factor of 3.7×106

25

A third pass allows robot decision

Transparency helps
show 12 dimensions,
2 at a time.

Starting to look like arcs
(angle ranges).

6 million function
evaluations (a few msec)

Information increases
by a factor of 1.8×1011

Remember, this is a rigorous bound of all possible solutions.
Gradient-type searching with floats can only guess.

26

Unums 2.0
Still Universal Numbers. They
are like the original unums, but:

•  Fixed size
•  Not an extension of IEEE

floats
•  ULP size variance becomes

sets
•  No redundant representations
•  No wasted bit patterns
•  No NaN exceptions
•  No penalty for using decimals!
•  No errors in converting

human-readable format to
and from machine-readable
format.

An example
unum set
with 1, 2, 5,
10, 20,… as
the “lattice”

26

27

Time to get serious
What is the best possible use of an 8-bit byte for real-valued calculations?

Start with kindergarten numbers:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Divide by 10 to center the set about 1:
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

This has the classic problem with decimal
IEEE floats: “wobbling precision.”

Deviations from smooth
exponential lead to
information loss

set member

value

28

Reciprocal closure cures
wobbling precision

Unite set with the reciprocals of
the values, guaranteeing closure:

0.1, /9, 0.125, /7, /6, 0.2, 0.25,
0.3, /3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1, /0.9, 1.25, /0.7, /0.6, 2, 2.5,
3, /0.3, 4, 5, 6, 7, 8, 9, 10

That’s 30 numbers. Room for 33
more.

set
member

value

No “kinks”!

29

One approach:

“Tapered Precision”
reduces relative
accuracy for
extreme
magnitudes,
allowing very large
dynamic range.

1

/0.9

1.25

/0.7

/0.6

2

2.5

3
/0.3

4
5

6
7

8
9

10
12.5

20
25

40
50

80

10
00

010
6

10
10

10
20

10
50

10
10

0/0

•  Define the > 1 lattice points
•  Unite with 0
•  Unite with reciprocals
•  Unite with negatives
•  Unite with open intervals;

circle is complete
•  Populate arithmetic tables

30

Flat precision
makes table
generation and
fused operations
easier.

Imagine: custom
number systems for
application-specific
arithmetic

1

/0.9

1.25

/0.7

/0.6

2

2.5

3
/0.3

4
5

6
7

8
9

10

6070809010
0

/0
.0

09
/0

•  A table need only contain
entries for one “decade,”
1 to 10

•  Power of 10 determined
via integer divide, instead
of having a separate bit
field

31

A very cool coincidence

Low powers of two: 1, 2, 4, 8, 16.
Low powers of five: 1, 5, 25, 125, 625.
Throw in the square root of ten, √10.
Scale to be between 1 and 10, and sort:

1, 1.25, 1.6, 2, 2.5, √10, 4, 5, 6.25, 8, 10

So what?

Why learn a weird new way
to count from 1 to 10?

32

Perfect exponential curve;
relative precision is absolutely flat.
1 decibel = 101/10 = 1.26…

10

0

1

2

3

4

5

6

7

8

9

lattice point, counting up from zero

Represented value

1

1.25

1.26…

2

1.6

1.58…

3

2

2.00…

4

2.5

2.51…

5

√10

√10

6

4

3.98…

7

5

5.01…

8

6.25

6.31…

9

8

7.94…

10

10

10

0

1

1

33

Like the “circle of fifths” in music

Made possible by another
logarithmic coincidence.

Interval of an octave is 2:1
Interval of a fifth is 3:2

Go up a fifth, twelve times.
What is the ratio?

1.512 is almost exactly
seven octaves!

The equal-tempered scale
is logarithmic, yet closely
approximates the ratio of
small integer ratios.

34

Non-negative exact values
0, 0.0008,

0.001, 0.00125, 0.0016, 0.002, 0.0025,
0.001√10, 0.004, 0.005, 0.00625, 0.008,

0.01, 0.0125, 0.016, 0.02, 0.025,
0.01√10, 0.04, 0.05, 0.0625, 0.08,

0.1, 0.125, 0.16, 0,2 , 0.25,
0.1√10, 0.4, 0.5, 0.625, 0.8,

1, 1.25, 1.6, 2 , 2.5,
√10, 4, 5, 6.25, 8,

10, 12.5, 16, 20 , 25,
10√10, 40, 50, 62.5, 80,

100, 125, 160, 200, 250,
100√10, 400, 500, 625, 800, 1000,

1250, /0

•  With negatives and
open ranges, 256
values (1 byte)

•  Over six orders of
magnitude

•  Only one digit
precision, but the
precision is flat

•  Exact decimals,
except for √10. (If
you don’t like it,
ignore it)

35

Closure plot for multiply, divide

 ● = Exact result
 ● = Inexact

(single ULP range)

Embedded ● are
where the power of 2
and the power of 5
differ by more than 4.

36

8-bit unum means 256-bit SORN

Ultra-fast parallel arithmetic on arbitrary subsets
of the real number line.

Ops can still finish within a single clock cycle,
with a tractable number of parallel OR gates.

0 (maxreal, ∞)

10000000

±∞
11000000 01000000 1111111100000000

… …

… …

1 –1
… …

… …

64 bits 64 bits 64 bits 64 bits

unums:

SORN:

37

Only need 16-bit SORN
for + – × ÷ ops
Connected sets remain connected under + – × ÷ ,
even division by zero!

Run-length encoding of a contiguous block of 1s
amongst 256 bits only takes 16 bits.

00000000 00000000 means all 256 bits are 0s
xxxxxxxx 00000000 means all 256 bits are 1s (if any x is nonzero)
00000010 00000110 means there is a block of 2 1s starting at position 6

2 6

Trivial logic still serves to negate and reciprocate
compressed form of value.

38

Table look-up background
In 1959, IBM
introduced its
1620 Model 1
computer,
internal
nickname
“CADET.”

All math was by
table look-up.

Customers
decided CADET
stood for “Can’t
Add, Doesn’t
Even Try.”

39

Table look-up requires ROM

Low-precision rigorous
math is possible at 100x
the speed of sloppy IEEE

floats.

•  Read-Only Memory needs
very few transistors. ~3x
denser than DRAM, ~14x
denser than SRAM.

•  Billions of ROM bits per
chip is easy.

•  Imagine the speed… all
operations take 1 clock!
Even xy.

•  1-op-per clock
architectures are much
easier to build.

•  Single argument-operations
require tiny tables. Trig,
exp, you name it.

x unum y unum

SORN for x + y

88 CMOS transistors for ROM
versus 280 for DRAM,

1,240 for SRAM

40

Cost of + – × ÷ tables (naïve)
•  Addition table: 256×256 entries, 2-byte entries =

128 kbytes
•  Symmetry cuts that in half, if we sort x and y inputs

so x ≤ y. Other economizations are easy to find.
•  Subtraction table: just reflect the addition table
•  Multiplication table: same size as addition table
•  Division table: just reflect the multiplication table!
•  Estimated chip cost: < 0.01 mm2, < 1 milliwatts

128 kbytes total for all four basic ops.
Another 64 kbytes if we also table xy.

41

What about, you know, decent
precision? Is 3 decimals enough?

IEEE half-precision (16 bits) has ~3 decimal accuracy
9 orders of magnitude, 6×10–5 to 6×104.
Many bit patterns wasted on NaN, negative zero, etc.
Can a 16-bit unum do better, and actually express decimals exactly?

0000000000000000

0100000000000000

1000000000000000

1100000000000000

/0

0

+1–1

65536 bit patterns. 8192 in the “lattice”.
Start with set = {1.00,1.01, 1.02,…, 9.99}.
Unite with reciprocals.
While set size < 16384:

 unite with 10× set.
Clip to 16384 elements centered at 1.00
Unite with negatives.
Unite with open intervals between exacts.
What is the dynamic range?

42

Answer: 9+ orders of magnitude

/0.389×10–5 to 0.389×105

This is the
Mathematica code for
generating the number
system.

Notice: no “gradual
underflow” issues to
deal with. No
subnormal numbers.

This is 1.5 times larger than the range for IEEE half-precision floats.

43

IEEE Intervals vs. SORNs
•  Interval arithmetic with IEEE 16-bit floats takes 32 bits

•  Only 9 orders of magnitude dynamic range
•  NaN exceptions, no way to express empty set
•  Requires rare expertise to use; nonstandard methods
•  Uncertainty grows exponentially in general (or worse)

•  SORN arithmetic with connected sets takes 32 bits

•  Over 9 orders of magnitude dynamic range
•  No indeterminate forms; closed under + – × ÷
•  Automatic control of information loss
•  Uncertainty grows linearly in general

44

Why unums don’t have the
interval arithmetic problem
Intervals: Each step starts from the
interval produced in the previous
step.
⇒ Bounds grow exponentially

Unums: Each stage of a calculation
starts with values that are either
exact or one ULP wide, and then
takes the union of the results.
⇒ Bounds grow linearly.

Unum n-body
calculation
shows slow,
linear expansion
of bound.

Intervals cannot
do this.

45

“Dependency Problem” ruins
interval arithmetic results
“Let x = [2, 4]. Repeat several times: x ← x – x; Print x.”

Intervals (128 bits):

[–2, 2]
[–4, 4]
[–8, 8]

[–16, 16]
[–32, 32]
[–64, 64]

[–128, 128]

Unstable. The uncertainty
feeds on itself, so interval
widths grow exponentially.

SORNs (8-bit unums):

(–1, 1)
(–0.2, 0.2)

(–0.04, 0.04)
(–0.01, 0.01)

(–0.002, 0.002)
(–0.0004, 0.0004)
(–0.0008, 0.0008)

Stable. Converges to the

smallest open interval
containing zero.

46

Another classic example of
“the Dependency Problem”
“Let x = [2, 4]. Repeat several times: x ← x / x; Print x.”

Intervals:

[1/2, 2]
[1/4, 4]

[1/16, 16]
[1/256, 256]

[1/65536, 65536]
⋮

Unstable. Again, the
interval widths grow

very rapidly.

SORNs (8-bit unums):

(0.625, 1.6)
(0.625, 1.6)
(0.625, 1.6)
(0.625, 1.6)
(0.625, 1.6)

⋮

Stable. Contains the
correct value, 1, despite
only single-digit accuracy

47

Why it works
0 (1250, /0) /0 1 –1 0.5 2

… …
Divide x by x, for each unum
whose presence bit is set.
(Ideally, do these in parallel.)

x is [1/2, 2]

0.5 / 0.5 = 1

0.625 / 0.625 = 1
(0.5, 0.625) / (0.5, 0.625) = (0.8, 1.25)

(0.625, 0.8) / (0.625, 0.8) = (0.78125, 1.28)➧(0.625, 1.6)
0.8 / 0.8

(0.8, 1) / (0.8, 1)
1 / 1

(1, 1.25) / (1, 1.25)
1.25 / 1.25

(1.25, 1.6) / (1.25, 1.6)
1.6 / 1.6

(1.6, 2) / (1.6, 2)
2 / 2

= 1
= (0.8, 1.25)
= 1
= (0.8, 1.25)
= 1
= (0.78125, 1.28)➧(0.625, 1.6)
= 1
= (0.8, 1.25)
= 1

OR the SORN bits to form the union: = (0.625, 1.6)

Compiler
sets the
hardware
mode to
“dependent”
so all table
look-ups are
reflexive,
not all-to-all.

48

Future Directions
•  Create 32-bit and 64-bit unums with new approach; table

look-up still practical?
•  Compare with IEEE single and double
•  General SORNs need run-length encoding.
•  Build C, D, Julia, Python versions of the arithmetic
•  Test on various workloads, like

•  Deep learning
•  N-body
•  Ray tracing
•  FFTs
•  Linear algebra done right (complete answer, not sample answer)
•  Other large dynamics problems

49

Summary
A complete break from IEEE floats may be
worth the disruption.

•  Makes every bit count, saving

storage/bandwidth,
energy/power

•  Mathematically superior in every
way, as sound as integers

•  Rigor without the overly pessimistic
bounds of interval arithmetic

/0

0

1 –1

This is a path beyond exascale.

