
AN ENERGY-EFFICIENT AND
MASSIVELY PARALLEL APPROACH
TO VALID NUMERICS

John L. Gustafson
ICRAR Seminar

john.gustafson@nus.sg.edu

2 June 2016

Why ask for 1018 flops per second?
Henry Ford once said, “If I had asked my
customers what they wanted, they would have said
they wanted a faster horse.”

That is what we are doing now with
supercomputing: asking for a faster horse, not
what comes after horses.

We do not need 1018 sloppy operations per second
that produce rounding errors of unknown size; we
need a new foundation for computer arithmetic.

Big problems facing computing
• Too much energy and power needed per calculation
• More hardware parallelism than we know how to use
• Not enough bandwidth (the “memory wall”)
• Rounding errors more treacherous than people realize
• Rounding errors prevent use of parallel methods
• Sampling errors turn physics simulations into guesswork
• Numerical methods are hard to use, require experts
•  IEEE floats give different answers on different platforms

The ones vendors care most about
• Too much energy and power needed per calculation
• More hardware parallelism than we know how to use
• Not enough bandwidth (the “memory wall”)
• Rounding errors more treacherous than people realize
• Rounding errors prevent use of parallel methods
• Sampling errors turn physics simulations into guesswork
• Numerical methods are hard to use, require experts
•  IEEE floats give different answers on different platforms

Too much power and heat needed
• Huge heat sinks
• 20 MW limit for exascale
• Data center electric bills
• Mobile device battery life
• Heat intensity means bulk
• Bulk increases latency
• Latency limits speed

More parallel hardware than we can use
• Huge clusters usually partitioned into 10s, 100s of cores
• Few algorithms exploit millions of cores except LINPACK
• Capacity is not a substitute for capability!

Not enough bandwidth (“Memory wall”)

Operation Energy
consumed

Time
needed

64-bit multiply-add 200 pJ 1 nsec

Read 64 bits from cache 800 pJ 3 nsec

Move 64 bits across chip 2000 pJ 5 nsec

Execute an instruction 7500 pJ 1 nsec

Read 64 bits from DRAM 12000 pJ 70 nsec

Notice that 12000 pJ at 3 GHz = 36 watts!

One-size-fits-all overkill 64-bit precision wastes energy, storage, bandwidth

Happy 101th Birthday, Floating Point
1914: Torres y Quevedo proposes automatic computing with fraction & exponent.
2015: We still use a format designed for World War I hardware capabilities.

The “Original Sin” of Computer Math

“The computer
cannot give you
the exact value,
sorry. Use this
value instead.
It’s close.”

A Key Idea: The Ubit
We have always had a way of expressing reals
correctly with a finite set of symbols.

Incorrect: π = 3.14

Correct: π = 3.14…

The latter means 3.14 < π < 3.15, a true statement.

Presence or absence of the “…” is the ubit, just like a sign bit.
It is 0 if exact, 1 if there are more bits after the last fraction bit,
not all 0s and not all 1s.

Floats designed for visible scratch work
• OK for manual calculations

•  Operator sees, remembers errors
•  Can head off overflow, underflow

• Automatic math hides all that
• No one sees processor “flags”
• Disobeys algebraic laws
• Wastes bit patterns as NaN

values (NaN = Not a Number)
•  IEEE 754 “standard” is really the

IEEE 754 guideline; optional
rules spoil consistent results

Analogy: Printing in 1970 vs. 2015
1970: 30 sec per page 2015: 30 sec per page

Faster technology is for better prints,
not thousands of low-quality prints per second.

Why not do the same thing with computer arithmetic?

This is just… sad.

Float Disaster: The Ariane 5
•  64-bit float measured speed
•  16-bit guidance system; oops
•  $0.7 billion gone in seconds

Why do programmers
have to manage storage
sizes when computers are
much better at doing it?

When rounding error killed 38 people

• First Gulf War
•  Left on for 100 hours
• Fraction “crowded

out” by integer part
• Guidance off by 0.43

seconds
• Patriot missed Scud
• Scud struck barracks

The Sleipner Oil Platform Disaster
• Float error in structural analysis; collapsed to ocean floor
•  ~$1 billion loss (in 2015 dollars)

August 23, 1991 August 24, 1991

Oops.

Floats prevent use of parallelism
• No associative property for floats
•  (a + b) + (c + d) (parallel) ≠ ((a + b) + c) + d (serial)
•  Looks like a “wrong answer”
• Programmers trust serial, reject parallel
•  IEEE floats report rounding, overflow, underflow in

processor register bits that no one ever sees.

A New Number Format: The Unum
• Universal numbers
• Superset of IEEE types,

both 754 and 1788
•  Integers!floats!unums
• No rounding, no overflow to
∞, no underflow to zero

•  They obey algebraic laws!
• Safe to parallelize
•  Fewer bits than floats
• But… they’re new
• Some people don’t like new

“You can’t boil the ocean.”
—Former Intel exec, when shown the unum idea

Three ways to express a big number
Avogadro’s number: ~6.022×1023 atoms or molecules

Unum (29 bits, here):

0 11001101 111111100001 1 111 1011

sign exp. frac. ubit exp. size frac. size

Self-descriptive “utag” bits track
and manage uncertainty, exponent
size, and fraction size

utag

IEEE Standard Float (64 bits):
0 10001001101 1111111000010101010011110100010101111110101000010011

sign exponent (scale) fraction

Sign-Magnitude Integer (80 bits):

0 1111111100001010101001111010001010111111010100001001010011000000000000000000000

sign Lots of digits

Fear of overflow wastes bits, time
• Huge exponents… why?
• Fear of overflow, underflow
• Easier for hardware

designer
• Universe size / proton size:

1040

• Single precision float range:
1083

• Double precision float
range: 10632

Why unums use fewer bits than floats
• Exponent smaller by about 5 – 10 bits, typically
• Trailing zeros in fraction compressed away, saves ~2 bits
• Shorter strings for more common values
• Cancellation removes bits and the need to store them

Unum (29 bits) (for example):

IEEE Standard Float (64 bits):
0 10001001101 1111111000010101010011110100010101111110101000010011

0 11001101 111111100001 1 111 1011

A Typesetting Analogy
The biggest
objection to unums
is likely to come
from the fact that
they are variable in
size, at least when
they are stored in
packed form.

18-point Courier
(fixed width font)

The biggest objection to
unums is likely to come from
the fact that they are variable
in size, at least when they are
stored in packed form.

18-point Times
(variable width font)

This shows the price of “One Size Fits All.”

Open ranges, as well as exact points
Bit string meanings

using IEEE Float rules
Bit string meanings

in unum format

Complete representation of all real numbers using a finite number of bits

The Warlpiri unums
Before the aboriginal Warlpiri of
Northern Australia had contact with
other civilizations, their counting
system was “One, two, many.”

Maybe they were onto something.

“Try everything” methods become feasible.

Fixed-size unums: faster than floats
• Warlpiri ubounds are one byte, but closed system for reals
• Unpacked unums pre-decode exception bits, hidden bit

Circuit required for
“IEEE half-precision
float = ∞?” Circuit required for

“unum = ∞?”
(any precision)

Floating Point II: The Wrath of Kahan
•  Berkeley professor William Kahan is the father of modern IEEE

Standard floats

•  Also the authority on their many dangers

•  Every idea to fix floats faces his tests that expose how new idea is
even worse

Working unum environment
completed August 13, 2013.

Can unums survive the
wrath of Kahan?

Typical Kahan Challenge (invented by J-M Müller)

•  Correct answer: (1, 1, 1, 1).
•  IEEE 32-bit: (0, 0, 0, 0) FAIL
•  IEEE 64-bit: (0, 0, 0, 0) FAIL
•  Myth: “Getting the same answer with increased precision means the

answer is correct.”
•  IEEE 128-bit: (0, 0, 0, 0) FAIL
•  Extended precision math packages: (0, 0, 0, 0) FAIL
•  Interval arithmetic: Um, somewhere between –∞ and ∞. EPIC FAIL
•  Unums, 6-bit average size: (1, 1, 1, 1) CORRECT

I have been unable to find a problem that “breaks” unum math.

Kahan’s “Smooth Surprise”
Find minimum of log(|3(1–x)+1|)/80 + x2 + 1 in 0.8 ≤ x ≤ 2.0

Plot, test using a few dozen
very low-precision unums.
Shows minimum where
x spans 4/3.
CORRECT

Plot, test using half a million
double-precision IEEE floats.
Shows minimum at x = 0.8.
FAIL

Even if you test every float in the
range, it will fail to detect the minimum!

Rump’s Royal Pain

• Using IBM (pre-IEEE Standard) floats, Rump got
•  1.172603 in 32-bit precision

•  1.1726039400531 in 64-bit precision
•  1.172603940053178 in 128-bit precision

• Correct answer: –0.82739605994682136…!
Didn’t even get sign right

Compute 333.75y6 + x2(11x2y2 – y6 – 121y4 – 2) + 5.5y8 + x/(2y)
 where x = 77617, y = 33096.

Unums: Correct answer to 23 decimals using an average
of only 75 bits per number. Not even IEEE 128-bit precision

can do that. Precision, range adjust automatically.

Some principles of unum math
Bound the answer as tightly as possible within
the numerical environment, or admit defeat.
• No more guessing
• No more “the error is O(hn)” type estimates
• The smaller the bound, the greater the information
• Performance is information per second
• Maximize information per bit
• Fused operations are always explicitly distinct from their

non-fused versions, so results are bitwise identical
across platforms

Answer sets are complex shapes in general, but interval bounds are axis-
aligned boxes, period.

No wonder interval bounds grow far too fast to be useful, in general!

Reason 1 why interval math hasn’t
displaced floats: The “Wrapping Problem”

Reason 2: The Dependency Problem

What wrecks interval arithmetic is simple things
like

F(x) = x – x.

Should be 0, or maybe [–ε, +ε]. Say x is the
interval [3, 4], then interval x – x stupidly evaluates
to [–1, +1], which doubles the uncertainty (interval
width) and makes the interval solution far inferior to
the point arithmetic method.

The unum architecture solves both
drawbacks of traditional interval arithmetic.

Accuracy on a 32-bit budget: a contest
For fair comparison of different number systems, put them
all on a strict diet of 32 bits, and compare their accuracy.

Say we want to compute

and we try

•  32-bit IEEE floats
•  Interval arithmetic [a,b] where a and b are 16-bit floats
• Unum arithmetic with average size less than 32 bits

cos(2π
3
) e− 2.7
π − (2 + 3)

⎛

⎝
⎜

⎞

⎠
⎟

Contest results: Floats
Correct answer, to 20 decimals: 1.9566500918359210527…

32-bit IEEE floats: 1.95669615268707275390625

•  5 decimals correct
• Off by 486 ULPs
• No indication of what the accuracy is

The nominal accuracy of 32-bit IEEE floats is 7+ decimals.

Contest results: Intervals
16-bit IEEE floats have 3+ decimal accuracy and a dynamic
range of about 9 orders of magnitude.
Example of an interval bound:
e = 2.71828… is represented by [2.716796875, 2.71875].

Result given by interval math:

[0.99853515625, 5.009765625]
????

• No decimals correct
• A rigorous bound, but uselessly pessimistic

Contest results: Unums
Using 9 bits in the self-descriptive utag, unums can take
anywhere from 12 to 78 bits, but we can cap it at 44 bits.

With an average length of 31.5 bits, the unum result is the
open interval

(1.9566497802734375, 1.956650257110595703125)
This bound is sixty times more accurate than the float result
and it guarantees the bound.

With 32 bits as the maximum size permitted, we get an
average size of 22.8 bits, and the interval

1.953125, 1.9609375)

An Experiment that should interest SKA:
Fast Fourier Transforms with unums

• Standard test: Complex 1024-point FFT, in-place.
•  12-bit input data, like A-to-D convertors produce
• Utag adds 6 bits to each value, but…

Bounds,
not guesses!

Uboxes and solution sets
• A ubox is a multidimensional unum
• Exact or ULP-wide in each

dimension (Unit in the Last Place)
• Sets of uboxes constitute a

solution set
• One dimension per degree of

freedom in solution
• Solves the main problems with

interval arithmetic
• Super-economical for bit storage
• Data parallel in general

Polynomials: bane of classic intervals
Dependency and closed endpoints lose information (amber)

Unum polynomial evaluator
loses no information.

Polynomial evaluation solved at last
Mathematicians have sought this for at least 60 years.

“Dependency Problem” creates sloppy
range when input is an interval

Unum evaluation refines answer to
limits of the environment precision

The Deeply Unsatisfying Error Bounds of
Classical Analysis

Error ≤ (b – a) h2 |f ʹ′ʹ′(ξ)| / 24

• Classical numerical texts
teach this “error bound”:

• What is f ʹ′ʹ′? Where is ξ ?
What is the bound??

• Bound is often infinite, which means no bound at all
•  “Whatever it is, it’s four times better if we make h half as

big” creates demand for supercomputing that cannot be
satisfied.

4x

Quarter-circle example
• Suppose all we know is x2 + y2 = 1, and x and y are ≥ 0.
• Suppose we have at most 2 bits exponent, 4 bits fraction.

Task:
 Bound the quarter circle area.
 (i.e., bound the value of π/4)
 Create the pixels for the shape.

Set is connected; need a seed
• We know x = 0, y = 1 works
• Find its eight ubox

neighbors in the plane
• Test x2 + y2 = 1, x ≥ 0, y ≥ 0
• Solution set is green
• Trial set is amber
• Failure set is red
• Stop when no more trials

Exactly one neighbor passes
• Unum math automatically

excludes cases that floats
would accept

• Trials are neighbors of new
solutions that
•  Are not already failures
•  Are not already solutions

• Note: no calculation of

Not part of the unit circle

y = 1− x2

The new trial set
• Five trial uboxes to test
• Perfect, easy parallelism

for multicore
• Each ubox takes only

15 to 23 bits
• Ultra-fast operations
• Skip to the final result…

The complete quarter circle
• The complete solution, to

this finite precision level
•  Information is reciprocal of

green area
• Use to find area under arc,

bounded above and below
• Proves value of π to an

accuracy of 3%
• No calculus needed, or

divides, or square roots

Compressed Final Result
• Coalesce uboxes to largest

possible ULP values
•  Lossless compression
• Total data set: 603 bits!
•  6x faster graphics than

current methods

Instead of ULPs being the
source of error, they are the
atomic units of computation

Fifth-degree polynomial roots
• Analytic solution: There isn’t one.
• Numerical solution: Huge errors from underflow to zero
• Unums: quickly return

x = –1, x = 2 as the exact
solutions. No rounding.
No underflow. Just…
the correct answer.
With as few as 4 bits
for the operands!

The power of open-closed endpoints

Root-finding
just works.

Classical Numerical Analysis
• Time steps

•  Use position to estimate force
•  Use force to estimate acceleration
•  Update the velocity
•  Update the position
•  Lather, rinse, repeat

• Accumulates rounding
and sampling error, both unknown

• Cannot be done in parallel

start

Δt

M

Δt

Δt

Δt

Pendulums Done Right
• Physics teaches us it’s a

harmonic oscillator with
period

• Force-fits nonlinear ODE
into linear ODE for which
calculus works.

• WRONG answer

2π g
L

A New Type of Parallelism
• Space steps, not time steps
• Acceleration, velocity bounded

in any given space interval
• Find traversal time as a function

of space step (2D ubox)
• Massively parallel!
• No rounding error
• No sampling error
• Obsoletes existing

ODE methods

Physical Truth vs. Force-Fit Solution

Traditional approach bends the problem to fit
known solution methods, gets wrong answer

Uboxes for linear solvers

0.74 0.75 0.76 0.77 0.78
x

0.64

0.65

0.66

0.67

0.68

0.69

0.70

y

•  If the A and b values in Ax=b
are rounded, the “lines” have
width from uncertainty

• Apply a standard solver, and
get the red dot as “the answer”,
x. A pair of floating-point
numbers.

• Check it by computing Ax and
see if it rigorously contains b.
Yes, it does.

• Hmm… are there any other
points that also work?

Float, Interval, and Ubox Solutions

0.7544 0.7546 0.7548 0.7550
x

0.6610

0.6612

0.6614

0.6616

0.6618
y

• Point solution (black dot) just gives
one of many solutions; disguises
answer instability

•  Interval method (gray box) yields a
bound too loose to be useful

•  The ubox set (green) is the best
you can do for a given precision

• Uboxes reveal ill-posed nature…
yet provide solution anyway

• Works equally well on nonlinear
problems!

Other Apps with Ubox Solutions

Imagine having provable bounds on
answers for the first time, yet with
easier programming, less storage, less
bandwidth use, less energy/power
demands, and abundant parallelism.

• Photorealistic computer
graphics

• N-body problems
• Structural analysis
•  Laplace’s equation
• Perfect gas models without

statistical mechanics

Revisiting the Big Challenges-1
• Too much energy and power needed per calculation

•  Unums cut the main energy hog (memory transfers) by about 50%

• More hardware parallelism than we know how to use
•  Uboxes reveal vast sources of data parallelism, the easiest kind

• Not enough bandwidth (the “memory wall”)
•  More use of CPU transistors, fewer bits moved to/from memory

• Rounding errors more treacherous than people realize
•  Unums eliminate rounding error, automate precision choice

• Rounding errors prevent use of multicore methods
•  Unums restore algebraic laws, eliminating the deterrent

Revisiting the Big Challenges-2
• Sampling errors turn physics simulations into guesswork

•  Uboxes produce provable bounds on physical behavior

• Numerical methods are hard to
use, require expertise
•  “Paint bucket” and “Try everything” are brute force general methods

that need no expertise… not even calculus

The End of Error
• A complete text on unums

and uboxes was published
Feb 2015 (CRC Press)

• Aimed at general reader;
mathematicians hate its
casual, accessible style

• Complete prototype
environment is available as
free Mathematica notebook
through publisher

• Amazon #1 Best Seller in
Number Systems; they keep
running out of copies

Work in Progress
• Unum data types are now in Julia (funded by A*STAR)

•  Alan Edelman, MIT
•  Viral Shah, Julia Computing
•  Deepak Vinchhi, Julia Computing
•  Isaac Yonemoto, REX Computing
•  Jeffrey Sarnoff, Diadem Special Projects
•  Job Van Der Zwan, julia-users@googlegroups.com
•  Thomas Breloff, Cointegrated Technologies
•  61 repository results on github, too many to list here

• A Python version of the prototype environment exists:
https://github.com/dpsanders/pyunum

Work in Progress
•  Lawrence Livermore National Lab

•  David Jefferson
•  Charles Reynolds
•  Robin Goldstone
•  Dan Quinlan
•  Markus Schordan
•  5 others

• University of California Santa Barbara
•  Carlos Maltzahn is creating open source community for unums; student hired

• Karlsruhe Institute of Technology
•  Ulrich Kulisch has formalized unum definition, proposed fixed-size implementation

•  IEEE
•  2015 President Tom Conte has urged creation of a unum IEEE Standard

Work in Progress
• Convert Mathematica prototype into a C library

•  Elavarasi Manogaran and Himeshi DeSilva, NUS
•  Basic arithmetic + – * / working as of last week. 2 million ops per second.

• FPGA version
•  A*STAR intends to fund and staff one of several efforts

• Custom VLSI processor
•  Initially with fixed-size data, plus lossless pack and unpack
•  Eventually, bit-addressed architecture with hardware memory

management (similar to disc controller)
•  Fundamentally different kind of processor design, incl. integer ops
•  REX Computing will put unums in next version of their CPU
•  A different unum approach discovered in February 2016 is super-

fast and hardware-friendly. Hear about it in tomorrow’s talk!

The ocean is already starting to boil. Thank you!

