
1 Right-Sizing Precision – March 2013 – John Gustafson 

Unleashed Computing: 
The need to right-size precision to save energy, 

bandwidth, storage, and electrical power 
Dr. John L. Gustafson, Senior Fellow, AMD 



2 Right-Sizing Precision – March 2013 – John Gustafson 

Outline 

•  What’s wrong with floating point 
•  What’s wrong with interval arithmetic 
•  A possible fix: “unum” representation 
•  The “ubox” approach 
•  Interval physics 
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It’s time to rethink computer arithmetic 

 Excess size in integers and floating point wastes memory, 
bandwidth, energy, and power. And time. 

 Programmers use excess size so they don’t have to think, or 
because optimal size is not native to the hardware. 

 Current methods come from a time when gates were 
expensive, wires were practically free. Now it’s reversed. 

 Overkill precision is a luxury we should consider doing 
without, for everything from mobile devices (better battery 
life) to exascale supercomputers (20 megawatt maximum). 

 What if we use representations that use more gates but 
demand less bandwidth? And for floating point, also get 
better answers? 
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Analogy: Printing in 1970 vs. 2013 

We use faster technology for better prints, 
not for thousands of lousy prints per second. Why 
not do the same thing with computer arithmetic? 

1970: 30 sec per page 2013: 30 sec per page 



5 Right-Sizing Precision – March 2013 – John Gustafson 

•  What’s wrong with floating point 
•  What’s wrong with interval arithmetic 
•  A possible fix: “unum” representation 
•  The “ubox” approach 
•  Interval physics 
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 What are the odds that a 1914 design, when gates were precious and 
wires practically free, is still the right choice? 

 Even the IEEE standard (1985) made choices that look dubious now 

– Single precision has a ridiculously large dynamic range, 76 orders of 
magnitude. (size of known universe to size of proton is 40 orders of 
magnitude.) Exponent hardware was much easier to build! 

–  8 million different kinds of NaN in single, 4.5 quadrillion kinds of NaN 
in double precision. Most people use two kinds, at most. 

– Given a choice, people will turn underflow exceptions off. Rightly so. 

– Negative zero. (ugh!) 

 Biggest problem: No accuracy information stored in the number. 

Floating point format is a 99-year-old idea 
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From Despair.com 
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Terminology Reminders 

 Precision = Digits available to store a number (“32-
bit” or “4 decimal”, for example) 
 Accuracy = Number of valid digits in a result (“to 
three significant digits”, for example) 
 ULP = Unit of Least Precision. 

Precision is not a goal. 
Precision is the means, accuracy is the end. 

Precise but not accurate: π = 3.140000000001 
Accurate but not precise: 3 < π < 4 
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Decades of asking people 
“How do you know your answer is correct?” 

  “(Laughter) “What do you mean?”(This is the most 
common response) 

  “We used double precision.” 

  “It’s the same answer we’ve always gotten.” 

  “It’s the same answer others get.” 

  “It agrees with special-case analytic answers.” 

Almost no one has the resources for detailed numerical 
analysis. So we use excess precision. 



10 Right-Sizing Precision – March 2013 – John Gustafson 

When rounding error ignorance killed 38 people 

Patriot missile accident. Feb1991, American Patriot missile failed 
to track an Iraqi Scud, instead hit an Army barracks. Traced to 
inaccurate time caused by incrementing time in tenths of a 
second.. Single-precision FP math silently accumulated error 
during the 100 hours between system turn-on and actual use. 

See http://www.fas.org/spp/starwars/gao/im92026.htm 
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Quick Tutorial on Rounding Error 

“0.1” in binary is not exact. It’s 0.10000002384185791015625, rounded. 
Programmers and disk archives use decimal, creating rounding error 

Also, 
(a + b) + c 
is NOT the same as 
a + (b + c) 
in floating-point math. 

a =  1.0 
b =  100000000. 
c = –100000000. 

(a + b) rounds down to = 100000000. Add c, get 0.0. 
(b + c) = 0 exactly, with no rounding. Add a, get 1.0. 

So floating point math flunks algebra! 
This is a problem for parallel programmers. 

Are different answers a bug or a rounding error? 

31

binary
point

fraction
(23 bit)

exponent
(8 bit)

sign
0	
�   to	
�   8388607/ 8388608)× (1.+

23 0

2–126 to 2+127±

Clock example: accumulating seconds, 0.1 at a time, for 100 hours, 
will be off by at least three minutes! 

Wrong bits 
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The LINPACK benchmark checks accuracy, but… 

============================================================================ 
T/V                N    NB     P     Q               Time             Gflops 
----------------------------------------------------------------------------
W00C2R4        25000   960     4     5             166.86          6.243e+02 
--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV- 
Max aggregated wall time rfact . . . :              22.74 
+ Max aggregated wall time pfact . . :               5.81 
+ Max aggregated wall time mxswp . . :               1.58 
Max aggregated wall time update  . . :             143.34 
+ Max aggregated wall time laswp . . :               9.55 
Max aggregated wall time up tr sv  . :               0.77 
---------------------------------------------------------------------------- 
||Ax-b||_oo / ( eps * ||A||_1  * N        ) =        0.0946517 ...... PASSED 
||Ax-b||_oo / ( eps * ||A||_1  * ||x||_1  ) =        0.0233708 ...... PASSED 
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) =        0.0040246 ...... PASSED 
============================================================================ 

Number of 
simultaneous 

equations 

The accuracy of the Ax = b answer is never published! 
What is the cutoff for “PASSED”? 

Speed 
(billions of 
floating-

point 
operations 

per second) 
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Using 64-bit everywhere is like insuring your car for 
ten million dollars. Some want to jump to 128-bit! 

70 

80 

1970 1980 1990 2000 

Bits 

Year 

CDC 60 

2010 

20 

30 

40 

50 

60 

1940 1950 1960 

Zuse 22 

Univac, IBM 36 

Cray 64 most vendors 64 

x86 80 (stack only) 
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“Unbiased rounding” won’t save you 

  Rounding biases are not always statistically independent! 
  And at petaflops/sec, “creeping crud” accumulates fast. 

n = # of floating-point ops 

Statistical case ~ ±√n ULPS 
after n independent roundings 

Statistical case ~ ±√n ULPS 
after n independent roundings 
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Better math could help a wide range of apps 

Financial 
Models 

Page Rank for Searches Angry 
Birds 

(box3d 
games) 

mp3 
Players 
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Excess precision burdens DRAM energy, which 
improves much slower than Moore’s Law 

Operation Energy consumed  

64-bit multiply-add 64 pJ 

Read/store register data 6 pJ 

Read 64 bits from DRAM 4200 pJ 
Read 32 bits from DRAM 2100 pJ 

Data is for 32 nm technology ca. 2010 

Using single precision in DRAM instead of double 
saves as much energy as 30 floating-point operations. 
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It’s so counterintuitive… 

0.583929181098938 x 1012 
0.452284961938858 x 109 x 

Copying numbers… 
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It’s so counterintuitive… 

0.583929181098938 x 1012 
0.452284961938858 x 109 x 

Copying numbers… 

4671433448791504 
2919645905494690 

4671433448791504 
4671433448791504 

1751787543296814 
5255362629890442 
583929181098938 

3503575086593628 
5255362629890442 

2335716724395752 
4671433448791504 

1167858362197876 
1167858362197876 

2919645905494690 
2335716724395752 

…is harder than doing THIS 
with them? 

0.264102387448322 x 1021 



19 Right-Sizing Precision – March 2013 – John Gustafson 

LINPACK power consumed (light on DRAM use) 

DRAM transfers more typically consume 25% of the 
power of a server, and this percentage is going up. 

1"Tflops/s"Today"

Heat%Removal%

Power%supplies%

Control%

Disk%

Comm.%

Memory%

Compute%
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Don’t laugh: 16-bit floating point is pretty good! 

  50% reduction in bandwidth and memory use, versus 32-bit 
  Three decimals of accuracy (0 to 2048 are exact) 
  Dynamic range of 12 orders of magnitude (6×10–8 to 6×104) 

  4x savings over 64-bit if it can be made numerically safe 
  Graphics, seismic, medical imaging are good candidates, but there may 

be many more uses 

15

binary point
fraction (10 bit)

sign
exponent

0 to 1023/2048) ×(0.5+

10 0

± 2–14 to 2+15
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Think about the Fast Fourier Transform kernel 

Data often comes from A/D 
converters with 12 or fewer bits of 
precision. 

For each complex “butterfly” 
operation, you do an x + y and an 
x – y; for one, you always wish 
you had more bits; for the other, 
you always wish you didn’t have 
so many! 

Current arithmetic doesn’t let you 
adjust either way. 
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•  What’s wrong with floating point 
•  What’s wrong with interval arithmetic 
•  A possible fix: “unum” representation 
•  The “ubox” approach 
•  Interval physics 

[a, b] means all x such that a ≤ x ≤ b 
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Reason 1 why interval math hasn’t displaced 
floating point: The “Wrapping Problem” 

Answer sets are complex shapes in general, but 
interval bounds are axis-aligned boxes, period. 
 
No wonder interval bounds grow far too fast to be 
useful, in general. 

y

x

V = x – y 

U = x + y
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Reason 2: The Single Use Expression Problem 
(sometimes called the Correlation Problem) 

What wrecks interval arithmetic is simple things like 

F(x) = x – x. 

Should be 0, or maybe [–ε, +ε]. Say x is the interval [3, 4], 
then interval x – x stupidly evaluates to [–1, +1], which 
doubles the uncertainty (interval width) and makes the 
interval solution far inferior to the point arithmetic method. 

Interval proponents say we should seek expressions where 
each variable only occurs once (SUE = Single Use 
Expression). But that’s impractical or impossible in general. 



25 Right-Sizing Precision – March 2013 – John Gustafson 

•  What’s wrong with floating point 
•  What’s wrong with interval arithmetic 
•  A possible fix: “unum” representation 
•  The “ubox” approach 
•  Interval physics 
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Long-distance communication was precious in 1836, so… 

  Morse Code: Use shortest bit strings for commonest data 
E T A M I N S R 

E T I A N S M …

3 4 5 6 6 7 7 8 

8 8 8 8 8 8 8 

  Compare that concise efficiency with ASCII: 

D 

8 

…
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Idea: Integer Compression by Size Tagging 

 Just think of how many programmers use a 32-bit loop counter even 
when the loop goes from, like, 0 to 3. 

 Approach 1: Last two bits (on byte boundary) indicate four possible 
lengths on the left: 6-bit, 14-bit, 30-bit, or 62-bit integers 

– Preserves byte alignment (but disrupts word alignment) 

– No more “short” “long int” etc. cases. Just “int”. (“char” is still a byte.) 

– Hardware promotes as needed (for addition, multiplication) up to the 
limit, and demotes if possible (for subtraction, division) 

– Doesn’t overflow until you exceed 4,611,686,018,427,387,903. 

– Simplifies integer instruction set, but adds gates to the ALU. I’m 
betting this is a net win within the CPU, and then you also get about a 
2x reduction in bandwidth based on preliminary experiments. 
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Here’s where you’ll start to get uncomfortable 

3 6 18 2 5 

 Approach 2: Six-bit tag indicates one less than size of integer 

–  Tag = 000000 means a Boolean, 

–  Tag = 001101 means a fourteen-bit int 

 Looks like a three-dollar bill to experienced architects 

  Ivan Sutherland talks about “Overcoming the Tyranny of the Clock”; 
I am suggesting “Overcoming the Tyranny of the Word Size”. 

 Packing and unpacking data blocks introduces garbage collection and 
bit addressability but might be well worth it. Hey, transistors are cheap. 

  Imagine automatic upsizing and downsizing int size after arithmetic, 
instead of allowing “worst case” fixed size everywhere. 
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Flexible exponent and fraction sizes can adjust to needs 

5 10 15 20 25 30

-4

-2

2

4

5 10 15 20 25 30

-20

-10

10

20

20 40 60 80 100 120

-30

-20

-10

10

20

30

1-bit exponent acts like 
a signed integer 

1-bit fraction, more bits in 
exponent 

A 7-bit “microfloat”: 
3-bit fraction, 3-bit exponent 

x axis is 
unsigned 
integer 
binary; 
y axis is 
value it 
represents 
as a float 
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Store the “inexact flag” in the number. 

Regard last bit as the inexact 
flag and you get two 
monotone functions. 
 
Combine that with flexible 
precision, and you have the 
key to an accuracy-aware 
numerical environment 

With inexact bit set, the 
represented values are open 
intervals one ULP wide. 5 10 15

-30

-20

-10

0

10

20

30
≠+•

Ø-•
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That was all warm-up for this: Unums 
“Unums”(universal numbers) are to floating point 

what floating point is to fixed point.  
 

Floating-point values self-describe their scale factor, but fix the exponent and 
fraction size. Unums self-describe the exponent size, fraction size, and 
inexact state, and include fixed point and IEEE floats as special cases. 

# of 
fraction 

bits 
# of 

exponent 
bits 

Inexact 
bit 

utag IEEE fraction IEEE biased exponent 

IEEE 
hidden 

bit 

IEEE 
sign 
bit 
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Advantages of Unum Format 

•  Common numbers like 0, –1/2, 3, use fewer 
bits. Rare numbers use more bits.  Net: 
about a 2x savings. 

•  Subtracting similar numbers destroys 
significance; unums automatically reduce 
storage and track the significance 

•  Adding numbers automatically promotes 
significance (up to a limit), often eliminating 
roundoff errors, preserving associativity 

•  No need for underflow, overflow, rounding 

•  A 12-bit utag allows everything from IEEE 
half precision to quad precision. And a lot 
more. 

•  Math libraries can be much faster since they need only compute to the 
stored level of significance 

Log2 of unum 

Possible 
unum values 
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A Related Idea: Asynchronous Design 

 Overcoming “the tyranny of the clock” is like overcoming the tyranny 
of fixed word sizes… major increases in speed, energy efficiency. 

 The effects compound each other.  
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Disadvantages of the Unum Format 

•  It’s new. And it’s different. No standards committee has 
approved it. Introducing it is “like trying to boil the ocean”. 

•  Non-power-of-two alignment. Needs packing and 
unpacking, garbage collection. 

•  Tag bit overhead leads to possibility that some workloads 
would increase the total bits for a specified accuracy. 

•  Unum operations require more logic in processor than 
floating-point, in exchange for reduced storage/bandwidth/
energy/power. (Wait, maybe this should be listed as an 
advantage!) 
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Test Drive for unums: Quadratic Equation 

 Programmer needs to solve ax2 + bx + c = 0 
 Recalling elementary school math, naïvely uses 
r1, r2 = (–b ± (b2 – 4ac)1/2)/(2a) 

 But (b2 – 4ac)1/2 might be very close to ±b, resulting in left-
digit destruction for one root. 

 
Try unums for a = 3, b = 100, c = 2, 

using unum representation. 
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Quadratic Equation Energy and Accuracy Result 

  Input unums take 12, 18, 11 bits; intermediate results take 12 to 45 bits 

 Paper estimate: 1442 pJ for unum, 3200 for 32-bit float (55% less energy) 

– Correct answer to nine places:  –0.0200120144… 

– Answer with 32-bit floating point:  –0.02001167 

– Answer with unums:   –0.020012014 ± 3×10–9  

•  Rigorous bound on result. 
•  More accurate result. 
•  Less energy used. 
•  Less storage and bandwidth used. 
•  Loss of accuracy is part of the answer. 
•  Much more like the way people compute with 

pencil and paper, but without the programmer 
having to think about precision. 
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•  What’s wrong with floating point 
•  What’s wrong with interval arithmetic 
•  A possible fix: “unum” representation 
•  The “ubox” approach 
•  Interval physics 
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Interval version of the unum: The “ubox” 

•  A ubox is a multidimensional 
unum, where the number of 
dimensions is the degrees of 
freedom in the answer. 

•  Dimensions are 0 (exact) or a 
single ULP (inexact). 

•  Sets of uboxes form the best-
possible answer with a given 
amount of precision. All 
possible answers (green) and 
none that cannot be in the 
answer set (red). 
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I hope U-Haul won’t mind. 
This “Ubox” has no hyphen. 
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Ubox example: Rigorous linear solvers 

•  Even 2 equations in 2 unknowns rigorously (interval bounds) involves 
computational geometry… intersecting 8 half-planes (2 parallelograms). 

•  “Ill-posed” problems much less of a problem with ubox methods! 

•  Ultimate solution is the minimum “containment set.” 

•  Gaussian elimination with interval values leads to VERY sloppy (usually 
useless) bounds! 

Answer is the set of all x-y 
floating-point (or unum) squares 
containing any part of the 
overlap. 

Tightest-possible box interval 
containing the overlap is still very 
sloppy. 

x 

y 
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2 equations in 2 unknowns as an intersection 
problem 

0.74 0.75 0.76 0.77 0.78
x

0.64

0.65

0.66

0.67

0.68

0.69

0.70

y

•  If the A and b values in Ax=b 
are rounded, the “lines” have 
width from uncertainty 

•  Apply a standard solver, and 
get the red dot as “the 
answer”, x. A pair of floating-
point numbers. 

•  Check it by computing Ax 
and see if it rigorously 
contains b. Yes, it does. 

•  Hmm… are there any other 
points that also work? 
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The yellow rectangle is what you get with interval 
arithmetic 

0.74 0.75 0.76 0.77 0.78
x

0.64

0.65

0.66

0.67

0.68

0.69

0.70

y

The “correlation 
problem” is a 
killer for Ax=b 
problems. 
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With one ubox that works, try its neighbors. 
(It’s like a ‘paint bucket’ fill-in algorithm.) 

0.754 0.756 0.758 0.760
x

0.658

0.660

0.662

0.664

0.666

0.668

0.670

y
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Ubox, Floating Point, and Interval Solutions 

0.7544 0.7546 0.7548 0.7550
x

0.6610

0.6612

0.6614

0.6616

0.6618
y

•  The point solution (black dot) just 
gives one of many solutions, and 
disguises the instability of the 
answer 

•  The interval method (gray rectangle) 
yields far too loose a bound to be 
useful 

•  The ubox method (green) is the best 
you can do for a given precision 
• Only now I’m using more storage 

• …and doing more computation 

• …but a lot less thinking about 
numerical analysis! 
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Try ubox method on a 3-equation Ax = b 
Solving three simultaneous linear equations is equivalent to 
finding the intersection of three planes. 

0.95

1.00

1.05

x1

0.95

1.00

1.05

x2

0.5

1.0

1.5

x3
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Assume every input in Ax = b is an interval 1 ULP 
wide. Intersecting slabs. 

Find ubox 
containing x. 
Find neighbors of 
that ubox. 
 
(Some answers just 
happened to be 
exact, so zero in 
that dimension. Flat 
uboxes.) 
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These all check out. Mark as OK. 
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Find candidates of new solution uboxes 
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Some completely fail Ax = b check 

Green uboxes 
are marked as 
boundary and 
are not tested 
again. 
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After a few iterations 

(Note: this 
example uses 
magenta as 
“intersects 
answer” and 
green as 
“completely 
outside answer.” 
Later I switched 
to go light and 
stop light 
colors.) 
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Final shell enclosing answer 
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The complete ubox-accurate answer 

This is every ubox 
in x for which Ax 
intersects b, and 
there are no 
uboxes that fail to 
intersect b. 
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Compare with naïve interval method 

The yellow box is the 
interval bound by 
applying, say, Gaussian 
elimination to the 
interval version of A. 
 
Getting good answers 
starts to look like a “big 
data” problem! Lots of 
parallelism to exploit, 
and an easily-selectable 
tradeoff between 
memory and answer 
quality. 
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•  What’s wrong with floating point 
•  What’s wrong with interval arithmetic 
•  A possible fix: “unum” representation 
•  The “ubox” approach 
•  Interval physics 
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Example Definition of “Quality” 

 For a physical simulation that computes F(x, y, z, t) on a 
domain D, bound the result rigorously by F– and F+. Then 
define total error E: 

 The answer quality is then Q = 1 / E. 
 Can do this for n-body problems, structural analysis, 
radiation transfer, and Laplace’s Equation… Bounds can 
come from conservation laws, causality, etc. 

 Or just add up the ubox volumes! 

E = F+ −F−( )D∫∫∫∫ dxdydzdt
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6

8

4
1

1

4

Radiation�source

Occluder
60%�reflective

Enclosure��80%�reflective

Radiation Transfer Example 

 Use a 2D problem for easier visualization: 

Radiation(patch) = Emittance + 

Reflectance ×Σ[received radiation] 
patches 
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Low-Quality Solution 

 Third dimension is F+ and F– for each surface 
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Better Quality Solution 

Note: All processors can update these asynchronously 
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Example: Laplace’s Equation 

 Magenta line specifies boundary 
condition. 

  Inside the unit square,  

 (Classic problem for relaxation 
methods, but multigrid has lowest 
arithmetic complexity.) 

∇2F = 0
F 

x 

y 
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Laplace’s Solvers: Which is Better? 

64-bit multigrid floating 
point method seems to 
have converged. 15 
decimals, some of them 
probably correct. Mostly. 

Ubox arithmetic provably 
bounds answer to 4 decimals, 
uses half the storage and 
bandwidth and energy. 
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Even the 3-Body Problem is Massively Parallel 
•  Appears “Embarrassingly Serial” with only 18 variables, yet 

simulation involves a huge number of serial steps. 

•  However: each step produces an irregular containment set. 
Use all available cores to track members of the set. 

•  Far more ops per data point. Billions of cores usefully 
employed. Provable bounds on the answer. 
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A rigorous, bounded 3-body simulator is 
possible using 8-bit floating-point 
•  Sign-bit, 3-bit exponent, 4-bit mantissa; IEEE rules 
•  Coded in Mathematica for now. Need a fast, native version… 
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Summary 

 A range of techniques exist for reducing bandwidth/storage/
energy/power requirements of numerical storage. 

 The most dramatic savings come from changing the 
numerical format itself. Unums often solve the associativity 
problem of floats, and ubox sets often solve the correlation 
problem of intervals. 

 Combining async design with unum flexible precision could 
give over 4x efficiency improvement, maybe the key to 
getting an exascale computer built earlier than 2020. 

 The unum approach could almost eliminate the need for 
numerical analysis in many algorithms. Let’s make computer 
math much smarter than what it was in 1914! 
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If you like this stuff, here’s where to learn more: 

Web-based information that is accessible for non-experts, and even 
entertaining to read: 
 
http://floating-point-gui.de/ 
 
http://en.wikipedia.org/wiki/Kahan_summation_algorithm 
 
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf 
 
http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.html 
 
http://en.wikipedia.org/wiki/IEEE_754-2008 
 


