
1 Right-Sizing Precision – March 2013 – John Gustafson

Unleashed Computing:
The need to right-size precision to save energy,

bandwidth, storage, and electrical power
Dr. John L. Gustafson, Senior Fellow, AMD

2 Right-Sizing Precision – March 2013 – John Gustafson

Outline

•  What’s wrong with floating point
•  What’s wrong with interval arithmetic
•  A possible fix: “unum” representation
•  The “ubox” approach
•  Interval physics

3 Right-Sizing Precision – March 2013 – John Gustafson

It’s time to rethink computer arithmetic

 Excess size in integers and floating point wastes memory,
bandwidth, energy, and power. And time.

 Programmers use excess size so they don’t have to think, or
because optimal size is not native to the hardware.

 Current methods come from a time when gates were
expensive, wires were practically free. Now it’s reversed.

 Overkill precision is a luxury we should consider doing
without, for everything from mobile devices (better battery
life) to exascale supercomputers (20 megawatt maximum).

 What if we use representations that use more gates but
demand less bandwidth? And for floating point, also get
better answers?

4 Right-Sizing Precision – March 2013 – John Gustafson

Analogy: Printing in 1970 vs. 2013

We use faster technology for better prints,
not for thousands of lousy prints per second. Why
not do the same thing with computer arithmetic?

1970: 30 sec per page 2013: 30 sec per page

5 Right-Sizing Precision – March 2013 – John Gustafson

•  What’s wrong with floating point
•  What’s wrong with interval arithmetic
•  A possible fix: “unum” representation
•  The “ubox” approach
•  Interval physics

6 Right-Sizing Precision – March 2013 – John Gustafson

 What are the odds that a 1914 design, when gates were precious and
wires practically free, is still the right choice?

 Even the IEEE standard (1985) made choices that look dubious now

– Single precision has a ridiculously large dynamic range, 76 orders of
magnitude. (size of known universe to size of proton is 40 orders of
magnitude.) Exponent hardware was much easier to build!

–  8 million different kinds of NaN in single, 4.5 quadrillion kinds of NaN
in double precision. Most people use two kinds, at most.

– Given a choice, people will turn underflow exceptions off. Rightly so.

– Negative zero. (ugh!)

 Biggest problem: No accuracy information stored in the number.

Floating point format is a 99-year-old idea

7 Right-Sizing Precision – March 2013 – John Gustafson

From Despair.com

8 Right-Sizing Precision – March 2013 – John Gustafson

Terminology Reminders

 Precision = Digits available to store a number (“32-
bit” or “4 decimal”, for example)
 Accuracy = Number of valid digits in a result (“to
three significant digits”, for example)
 ULP = Unit of Least Precision.

Precision is not a goal.
Precision is the means, accuracy is the end.

Precise but not accurate: π = 3.140000000001
Accurate but not precise: 3 < π < 4

9 Right-Sizing Precision – March 2013 – John Gustafson

Decades of asking people
“How do you know your answer is correct?”

  “(Laughter) “What do you mean?”(This is the most
common response)

  “We used double precision.”

  “It’s the same answer we’ve always gotten.”

  “It’s the same answer others get.”

  “It agrees with special-case analytic answers.”

Almost no one has the resources for detailed numerical
analysis. So we use excess precision.

10 Right-Sizing Precision – March 2013 – John Gustafson

When rounding error ignorance killed 38 people

Patriot missile accident. Feb1991, American Patriot missile failed
to track an Iraqi Scud, instead hit an Army barracks. Traced to
inaccurate time caused by incrementing time in tenths of a
second.. Single-precision FP math silently accumulated error
during the 100 hours between system turn-on and actual use.

See http://www.fas.org/spp/starwars/gao/im92026.htm

11 Right-Sizing Precision – March 2013 – John Gustafson

Quick Tutorial on Rounding Error

“0.1” in binary is not exact. It’s 0.10000002384185791015625, rounded.
Programmers and disk archives use decimal, creating rounding error

Also,
(a + b) + c
is NOT the same as
a + (b + c)
in floating-point math.

a = 1.0
b = 100000000.
c = –100000000.

(a + b) rounds down to = 100000000. Add c, get 0.0.
(b + c) = 0 exactly, with no rounding. Add a, get 1.0.

So floating point math flunks algebra!
This is a problem for parallel programmers.

Are different answers a bug or a rounding error?

31

binary
point

fraction
(23 bit)

exponent
(8 bit)

sign
0	
�   to	
�   8388607/ 8388608)× (1.+

23 0

2–126 to 2+127±

Clock example: accumulating seconds, 0.1 at a time, for 100 hours,
will be off by at least three minutes!

Wrong bits

12 Right-Sizing Precision – March 2013 – John Gustafson

The LINPACK benchmark checks accuracy, but…

==
T/V N NB P Q Time Gflops
--
W00C2R4 25000 960 4 5 166.86 6.243e+02
--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV-
Max aggregated wall time rfact . . . : 22.74
+ Max aggregated wall time pfact . . : 5.81
+ Max aggregated wall time mxswp . . : 1.58
Max aggregated wall time update . . : 143.34
+ Max aggregated wall time laswp . . : 9.55
Max aggregated wall time up tr sv . : 0.77
--
||Ax-b||_oo / (eps * ||A||_1 * N) = 0.0946517 PASSED
||Ax-b||_oo / (eps * ||A||_1 * ||x||_1) = 0.0233708 PASSED
||Ax-b||_oo / (eps * ||A||_oo * ||x||_oo) = 0.0040246 PASSED
==

Number of
simultaneous

equations

The accuracy of the Ax = b answer is never published!
What is the cutoff for “PASSED”?

Speed
(billions of
floating-

point
operations

per second)

13 Right-Sizing Precision – March 2013 – John Gustafson

Using 64-bit everywhere is like insuring your car for
ten million dollars. Some want to jump to 128-bit!

70

80

1970 1980 1990 2000

Bits

Year

CDC 60

2010

20

30

40

50

60

1940 1950 1960

Zuse 22

Univac, IBM 36

Cray 64 most vendors 64

x86 80 (stack only)

14 Right-Sizing Precision – March 2013 – John Gustafson

“Unbiased rounding” won’t save you

  Rounding biases are not always statistically independent!
  And at petaflops/sec, “creeping crud” accumulates fast.

n = # of floating-point ops

Statistical case ~ ±√n ULPS
after n independent roundings

Statistical case ~ ±√n ULPS
after n independent roundings

15 Right-Sizing Precision – March 2013 – John Gustafson

Better math could help a wide range of apps

Financial
Models

Page Rank for Searches Angry
Birds

(box3d
games)

mp3
Players

16 Right-Sizing Precision – March 2013 – John Gustafson

Excess precision burdens DRAM energy, which
improves much slower than Moore’s Law

Operation Energy consumed

64-bit multiply-add 64 pJ

Read/store register data 6 pJ

Read 64 bits from DRAM 4200 pJ
Read 32 bits from DRAM 2100 pJ

Data is for 32 nm technology ca. 2010

Using single precision in DRAM instead of double
saves as much energy as 30 floating-point operations.

17 Right-Sizing Precision – March 2013 – John Gustafson

It’s so counterintuitive…

0.583929181098938 x 1012
0.452284961938858 x 109 x

Copying numbers…

18 Right-Sizing Precision – March 2013 – John Gustafson

It’s so counterintuitive…

0.583929181098938 x 1012
0.452284961938858 x 109 x

Copying numbers…

4671433448791504
2919645905494690

4671433448791504
4671433448791504

1751787543296814
5255362629890442
583929181098938

3503575086593628
5255362629890442

2335716724395752
4671433448791504

1167858362197876
1167858362197876

2919645905494690
2335716724395752

…is harder than doing THIS
with them?

0.264102387448322 x 1021

19 Right-Sizing Precision – March 2013 – John Gustafson

LINPACK power consumed (light on DRAM use)

DRAM transfers more typically consume 25% of the
power of a server, and this percentage is going up.

1"Tflops/s"Today"

Heat%Removal%

Power%supplies%

Control%

Disk%

Comm.%

Memory%

Compute%

20 Right-Sizing Precision – March 2013 – John Gustafson

Don’t laugh: 16-bit floating point is pretty good!

  50% reduction in bandwidth and memory use, versus 32-bit
  Three decimals of accuracy (0 to 2048 are exact)
  Dynamic range of 12 orders of magnitude (6×10–8 to 6×104)

  4x savings over 64-bit if it can be made numerically safe
  Graphics, seismic, medical imaging are good candidates, but there may

be many more uses

15

binary point
fraction (10 bit)

sign
exponent

0 to 1023/2048) ×(0.5+

10 0

± 2–14 to 2+15

21 Right-Sizing Precision – March 2013 – John Gustafson

Think about the Fast Fourier Transform kernel

Data often comes from A/D
converters with 12 or fewer bits of
precision.

For each complex “butterfly”
operation, you do an x + y and an
x – y; for one, you always wish
you had more bits; for the other,
you always wish you didn’t have
so many!

Current arithmetic doesn’t let you
adjust either way.

22 Right-Sizing Precision – March 2013 – John Gustafson

•  What’s wrong with floating point
•  What’s wrong with interval arithmetic
•  A possible fix: “unum” representation
•  The “ubox” approach
•  Interval physics

[a, b] means all x such that a ≤ x ≤ b

23 Right-Sizing Precision – March 2013 – John Gustafson

Reason 1 why interval math hasn’t displaced
floating point: The “Wrapping Problem”

Answer sets are complex shapes in general, but
interval bounds are axis-aligned boxes, period.

No wonder interval bounds grow far too fast to be
useful, in general.

y

x

V = x – y

U = x + y

24 Right-Sizing Precision – March 2013 – John Gustafson

Reason 2: The Single Use Expression Problem
(sometimes called the Correlation Problem)

What wrecks interval arithmetic is simple things like

F(x) = x – x.

Should be 0, or maybe [–ε, +ε]. Say x is the interval [3, 4],
then interval x – x stupidly evaluates to [–1, +1], which
doubles the uncertainty (interval width) and makes the
interval solution far inferior to the point arithmetic method.

Interval proponents say we should seek expressions where
each variable only occurs once (SUE = Single Use
Expression). But that’s impractical or impossible in general.

25 Right-Sizing Precision – March 2013 – John Gustafson

•  What’s wrong with floating point
•  What’s wrong with interval arithmetic
•  A possible fix: “unum” representation
•  The “ubox” approach
•  Interval physics

26 Right-Sizing Precision – March 2013 – John Gustafson

Long-distance communication was precious in 1836, so…

  Morse Code: Use shortest bit strings for commonest data
E T A M I N S R

E T I A N S M …

3 4 5 6 6 7 7 8

8 8 8 8 8 8 8

  Compare that concise efficiency with ASCII:

D

8

…

27 Right-Sizing Precision – March 2013 – John Gustafson

Idea: Integer Compression by Size Tagging

 Just think of how many programmers use a 32-bit loop counter even
when the loop goes from, like, 0 to 3.

 Approach 1: Last two bits (on byte boundary) indicate four possible
lengths on the left: 6-bit, 14-bit, 30-bit, or 62-bit integers

– Preserves byte alignment (but disrupts word alignment)

– No more “short” “long int” etc. cases. Just “int”. (“char” is still a byte.)

– Hardware promotes as needed (for addition, multiplication) up to the
limit, and demotes if possible (for subtraction, division)

– Doesn’t overflow until you exceed 4,611,686,018,427,387,903.

– Simplifies integer instruction set, but adds gates to the ALU. I’m
betting this is a net win within the CPU, and then you also get about a
2x reduction in bandwidth based on preliminary experiments.

28 Right-Sizing Precision – March 2013 – John Gustafson

Here’s where you’ll start to get uncomfortable

3 6 18 2 5

 Approach 2: Six-bit tag indicates one less than size of integer

–  Tag = 000000 means a Boolean,

–  Tag = 001101 means a fourteen-bit int

 Looks like a three-dollar bill to experienced architects

  Ivan Sutherland talks about “Overcoming the Tyranny of the Clock”;
I am suggesting “Overcoming the Tyranny of the Word Size”.

 Packing and unpacking data blocks introduces garbage collection and
bit addressability but might be well worth it. Hey, transistors are cheap.

  Imagine automatic upsizing and downsizing int size after arithmetic,
instead of allowing “worst case” fixed size everywhere.

29 Right-Sizing Precision – March 2013 – John Gustafson

Flexible exponent and fraction sizes can adjust to needs

5 10 15 20 25 30

-4

-2

2

4

5 10 15 20 25 30

-20

-10

10

20

20 40 60 80 100 120

-30

-20

-10

10

20

30

1-bit exponent acts like
a signed integer

1-bit fraction, more bits in
exponent

A 7-bit “microfloat”:
3-bit fraction, 3-bit exponent

x axis is
unsigned
integer
binary;
y axis is
value it
represents
as a float

30 Right-Sizing Precision – March 2013 – John Gustafson

Store the “inexact flag” in the number.

Regard last bit as the inexact
flag and you get two
monotone functions.

Combine that with flexible
precision, and you have the
key to an accuracy-aware
numerical environment

With inexact bit set, the
represented values are open
intervals one ULP wide. 5 10 15

-30

-20

-10

0

10

20

30
≠+•

Ø-•

31 Right-Sizing Precision – March 2013 – John Gustafson

That was all warm-up for this: Unums
“Unums”(universal numbers) are to floating point

what floating point is to fixed point.

Floating-point values self-describe their scale factor, but fix the exponent and
fraction size. Unums self-describe the exponent size, fraction size, and
inexact state, and include fixed point and IEEE floats as special cases.

of
fraction

bits
of

exponent
bits

Inexact
bit

utag IEEE fraction IEEE biased exponent

IEEE
hidden

bit

IEEE
sign
bit

32 Right-Sizing Precision – March 2013 – John Gustafson

Advantages of Unum Format

•  Common numbers like 0, –1/2, 3, use fewer
bits. Rare numbers use more bits. Net:
about a 2x savings.

•  Subtracting similar numbers destroys
significance; unums automatically reduce
storage and track the significance

•  Adding numbers automatically promotes
significance (up to a limit), often eliminating
roundoff errors, preserving associativity

•  No need for underflow, overflow, rounding

•  A 12-bit utag allows everything from IEEE
half precision to quad precision. And a lot
more.

•  Math libraries can be much faster since they need only compute to the
stored level of significance

Log2 of unum

Possible
unum values

33 Right-Sizing Precision – March 2013 – John Gustafson

A Related Idea: Asynchronous Design

 Overcoming “the tyranny of the clock” is like overcoming the tyranny
of fixed word sizes… major increases in speed, energy efficiency.

 The effects compound each other.

34 Right-Sizing Precision – March 2013 – John Gustafson

Disadvantages of the Unum Format

•  It’s new. And it’s different. No standards committee has
approved it. Introducing it is “like trying to boil the ocean”.

•  Non-power-of-two alignment. Needs packing and
unpacking, garbage collection.

•  Tag bit overhead leads to possibility that some workloads
would increase the total bits for a specified accuracy.

•  Unum operations require more logic in processor than
floating-point, in exchange for reduced storage/bandwidth/
energy/power. (Wait, maybe this should be listed as an
advantage!)

35 Right-Sizing Precision – March 2013 – John Gustafson

Test Drive for unums: Quadratic Equation

 Programmer needs to solve ax2 + bx + c = 0
 Recalling elementary school math, naïvely uses
r1, r2 = (–b ± (b2 – 4ac)1/2)/(2a)

 But (b2 – 4ac)1/2 might be very close to ±b, resulting in left-
digit destruction for one root.

Try unums for a = 3, b = 100, c = 2,

using unum representation.

36 Right-Sizing Precision – March 2013 – John Gustafson

Quadratic Equation Energy and Accuracy Result

  Input unums take 12, 18, 11 bits; intermediate results take 12 to 45 bits

 Paper estimate: 1442 pJ for unum, 3200 for 32-bit float (55% less energy)

– Correct answer to nine places: –0.0200120144…

– Answer with 32-bit floating point: –0.02001167

– Answer with unums: –0.020012014 ± 3×10–9

•  Rigorous bound on result.
•  More accurate result.
•  Less energy used.
•  Less storage and bandwidth used.
•  Loss of accuracy is part of the answer.
•  Much more like the way people compute with

pencil and paper, but without the programmer
having to think about precision.

37 Right-Sizing Precision – March 2013 – John Gustafson

•  What’s wrong with floating point
•  What’s wrong with interval arithmetic
•  A possible fix: “unum” representation
•  The “ubox” approach
•  Interval physics

38 Right-Sizing Precision – March 2013 – John Gustafson

Interval version of the unum: The “ubox”

•  A ubox is a multidimensional
unum, where the number of
dimensions is the degrees of
freedom in the answer.

•  Dimensions are 0 (exact) or a
single ULP (inexact).

•  Sets of uboxes form the best-
possible answer with a given
amount of precision. All
possible answers (green) and
none that cannot be in the
answer set (red).

39 Right-Sizing Precision – March 2013 – John Gustafson

I hope U-Haul won’t mind.
This “Ubox” has no hyphen.

40 Right-Sizing Precision – March 2013 – John Gustafson

Ubox example: Rigorous linear solvers

•  Even 2 equations in 2 unknowns rigorously (interval bounds) involves
computational geometry… intersecting 8 half-planes (2 parallelograms).

•  “Ill-posed” problems much less of a problem with ubox methods!

•  Ultimate solution is the minimum “containment set.”

•  Gaussian elimination with interval values leads to VERY sloppy (usually
useless) bounds!

Answer is the set of all x-y
floating-point (or unum) squares
containing any part of the
overlap.

Tightest-possible box interval
containing the overlap is still very
sloppy.

x

y

41 Right-Sizing Precision – March 2013 – John Gustafson

2 equations in 2 unknowns as an intersection
problem

0.74 0.75 0.76 0.77 0.78
x

0.64

0.65

0.66

0.67

0.68

0.69

0.70

y

•  If the A and b values in Ax=b
are rounded, the “lines” have
width from uncertainty

•  Apply a standard solver, and
get the red dot as “the
answer”, x. A pair of floating-
point numbers.

•  Check it by computing Ax
and see if it rigorously
contains b. Yes, it does.

•  Hmm… are there any other
points that also work?

42 Right-Sizing Precision – March 2013 – John Gustafson

The yellow rectangle is what you get with interval
arithmetic

0.74 0.75 0.76 0.77 0.78
x

0.64

0.65

0.66

0.67

0.68

0.69

0.70

y

The “correlation
problem” is a
killer for Ax=b
problems.

43 Right-Sizing Precision – March 2013 – John Gustafson

With one ubox that works, try its neighbors.
(It’s like a ‘paint bucket’ fill-in algorithm.)

0.754 0.756 0.758 0.760
x

0.658

0.660

0.662

0.664

0.666

0.668

0.670

y

44 Right-Sizing Precision – March 2013 – John Gustafson

Ubox, Floating Point, and Interval Solutions

0.7544 0.7546 0.7548 0.7550
x

0.6610

0.6612

0.6614

0.6616

0.6618
y

•  The point solution (black dot) just
gives one of many solutions, and
disguises the instability of the
answer

•  The interval method (gray rectangle)
yields far too loose a bound to be
useful

•  The ubox method (green) is the best
you can do for a given precision
• Only now I’m using more storage

• …and doing more computation

• …but a lot less thinking about
numerical analysis!

45 Right-Sizing Precision – March 2013 – John Gustafson

Try ubox method on a 3-equation Ax = b
Solving three simultaneous linear equations is equivalent to
finding the intersection of three planes.

0.95

1.00

1.05

x1

0.95

1.00

1.05

x2

0.5

1.0

1.5

x3

46 Right-Sizing Precision – March 2013 – John Gustafson

Assume every input in Ax = b is an interval 1 ULP
wide. Intersecting slabs.

Find ubox
containing x.
Find neighbors of
that ubox.

(Some answers just
happened to be
exact, so zero in
that dimension. Flat
uboxes.)

47 Right-Sizing Precision – March 2013 – John Gustafson

These all check out. Mark as OK.

48 Right-Sizing Precision – March 2013 – John Gustafson

Find candidates of new solution uboxes

49 Right-Sizing Precision – March 2013 – John Gustafson

Some completely fail Ax = b check

Green uboxes
are marked as
boundary and
are not tested
again.

50 Right-Sizing Precision – March 2013 – John Gustafson

After a few iterations

(Note: this
example uses
magenta as
“intersects
answer” and
green as
“completely
outside answer.”
Later I switched
to go light and
stop light
colors.)

51 Right-Sizing Precision – March 2013 – John Gustafson

Final shell enclosing answer

52 Right-Sizing Precision – March 2013 – John Gustafson

The complete ubox-accurate answer

This is every ubox
in x for which Ax
intersects b, and
there are no
uboxes that fail to
intersect b.

53 Right-Sizing Precision – March 2013 – John Gustafson

Compare with naïve interval method

The yellow box is the
interval bound by
applying, say, Gaussian
elimination to the
interval version of A.

Getting good answers
starts to look like a “big
data” problem! Lots of
parallelism to exploit,
and an easily-selectable
tradeoff between
memory and answer
quality.

54 Right-Sizing Precision – March 2013 – John Gustafson

•  What’s wrong with floating point
•  What’s wrong with interval arithmetic
•  A possible fix: “unum” representation
•  The “ubox” approach
•  Interval physics

55 Right-Sizing Precision – March 2013 – John Gustafson

Example Definition of “Quality”

 For a physical simulation that computes F(x, y, z, t) on a
domain D, bound the result rigorously by F– and F+. Then
define total error E:

 The answer quality is then Q = 1 / E.
 Can do this for n-body problems, structural analysis,
radiation transfer, and Laplace’s Equation… Bounds can
come from conservation laws, causality, etc.

 Or just add up the ubox volumes!

E = F+ −F−()D∫∫∫∫ dxdydzdt

56 Right-Sizing Precision – March 2013 – John Gustafson

6

8

4
1

1

4

Radiation�source

Occluder
60%�reflective

Enclosure��80%�reflective

Radiation Transfer Example

 Use a 2D problem for easier visualization:

Radiation(patch) = Emittance +

Reflectance ×Σ[received radiation]
patches

57 Right-Sizing Precision – March 2013 – John Gustafson

Low-Quality Solution

 Third dimension is F+ and F– for each surface

58 Right-Sizing Precision – March 2013 – John Gustafson

Better Quality Solution

Note: All processors can update these asynchronously

59 Right-Sizing Precision – March 2013 – John Gustafson

Example: Laplace’s Equation

 Magenta line specifies boundary
condition.

  Inside the unit square,

 (Classic problem for relaxation
methods, but multigrid has lowest
arithmetic complexity.)

∇2F = 0
F

x

y

60 Right-Sizing Precision – March 2013 – John Gustafson

Laplace’s Solvers: Which is Better?

64-bit multigrid floating
point method seems to
have converged. 15
decimals, some of them
probably correct. Mostly.

Ubox arithmetic provably
bounds answer to 4 decimals,
uses half the storage and
bandwidth and energy.

61 Right-Sizing Precision – March 2013 – John Gustafson

Even the 3-Body Problem is Massively Parallel
•  Appears “Embarrassingly Serial” with only 18 variables, yet

simulation involves a huge number of serial steps.

•  However: each step produces an irregular containment set.
Use all available cores to track members of the set.

•  Far more ops per data point. Billions of cores usefully
employed. Provable bounds on the answer.

62 Right-Sizing Precision – March 2013 – John Gustafson

A rigorous, bounded 3-body simulator is
possible using 8-bit floating-point
•  Sign-bit, 3-bit exponent, 4-bit mantissa; IEEE rules
•  Coded in Mathematica for now. Need a fast, native version…

63 Right-Sizing Precision – March 2013 – John Gustafson

Summary

 A range of techniques exist for reducing bandwidth/storage/
energy/power requirements of numerical storage.

 The most dramatic savings come from changing the
numerical format itself. Unums often solve the associativity
problem of floats, and ubox sets often solve the correlation
problem of intervals.

 Combining async design with unum flexible precision could
give over 4x efficiency improvement, maybe the key to
getting an exascale computer built earlier than 2020.

 The unum approach could almost eliminate the need for
numerical analysis in many algorithms. Let’s make computer
math much smarter than what it was in 1914!

64 Right-Sizing Precision – March 2013 – John Gustafson

If you like this stuff, here’s where to learn more:

Web-based information that is accessible for non-experts, and even
entertaining to read:

http://floating-point-gui.de/

http://en.wikipedia.org/wiki/Kahan_summation_algorithm

http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.html

http://en.wikipedia.org/wiki/IEEE_754-2008

