
1

{

A Radical Approach to
Computation with Real Numbers

John Gustafson
A*CRC and NUS ±∞

0

+–

“Unums version 2.0”

2

Break completely from
IEEE 754 floats and gain:
•  Computation with mathematical rigor
•  Robust set representations with a fixed number of bits
•  1-clock binary ops with no exception cases
•  Tractable “exhaustive search” in high dimensions

Strategy: Get ultra-low precision right, then work up.

3

All projective reals, using 2 bits

00

01

10

11

“±∞” is “the point at
infinity” and is
unsigned.

Think of it as the
reciprocal of zero.

±∞

0

+–

4

Linear depiction
exact

0
all positive reals

(0, ∞)
all negative reals

(–∞, 0)

00 01

±∞

10 11

Maps to the way 2s complement integers work!

Redundant point at infinity on the right is not shown.

5

Absence-Presence Bits
0 (open shape) if absent
from the set,
1 (filled shape) if present in
the set.

Rectangle if exact, oval or
circle if inexact (range)

Red if negative, blue if
positive

Forms the power set of
the four states.

24 = 16 possible subsets
of the extended reals.

00

!"

or

0

01

!"

or

(0, ∞)

11

!"

or

(–∞, 0)

10

!"

or

±∞

6

Sets become numeric quantities

Closed under
x + y x – y
x × y x ÷ y
 and… xy

Tolerates division by 0.
No indeterminate forms.

Very different from
symbolic ways of dealing
with sets.

“SORNs”: Sets Of Real Numbers

The extended positive reals, (0, ∞]

All nonzero extended reals [–∞, 0) ∪ (0, ∞]

All nonzero reals, (–∞, 0) ∪ (0, ∞)

All nonpositive reals, (–∞, 0]

All reals, (–∞, ∞)

The point at infinity, ±∞

The unsigned values, 0∪ ±∞

The extended nonnegative reals, [0, ∞]

The extended negative reals, [–∞, 0)

The extended nonpositive reals, [–∞, 0]

All extended reals, [–∞, ∞]

All negative reals, (–∞, 0)

All nonnegative reals, [0, ∞)

Zero, 0
All positive reals (0, ∞)

The empty set, { }

7

No more “Not a Number”
√–1 = empty set:

0 / 0 = everything:

∞ – ∞ = everything:

1∞ = all nonnegatives, [0, ∞]:

etc.

Answers, as limit forms, are sets. We can express those!

8

Op tables need only be 4x4

+

Note that three entries “blur”,
indicating information loss.

For any SORN, do table
look-up for pairwise bits
that are set, and find the
union with a bitwise OR.

+

parallel
OR

9

Now include +1 and –1

000

010

100

110

The SORN is 8 bits long.

This is actually enough
of a number system to
be useful!

±∞

0

+1–1

001111

011101

(0,1)

(1,∞)(–∞,–1)

(–1,0)

10

Example: Robotic Arm Kinematics
12-dimensional
nonlinear system (!)

Notice all values
must be in [–1,1] $

11

“Try everything”… in 12 dimensions

Every variable is in [-1,1], so
split into [-1,0) and [0,1] and
compute the constraint function
to 3-bit accuracy.

%= violates constraints"
%= compliant subset"

212 = 4096 sub-cubes can be
evaluated in parallel, in a few
nanoseconds.

12

One option: more powers of 2

0000

0100

1000

1100

There is nothing special
about 2. We could have
added 10 and 1/10, or
even π and 1/π, or any
exact number.
(Yes, π can be
numerically exact, if we
want it to be!)

±∞

0

1–1

00101110

01101010

1/2

2–2

-1/2

0001

0011

0101

01111001

1011

1101

1111

13

Note: sign bit is in the usual place

0000

0100

1000

1100

The sign of 0 and ±∞ is
meaningless, since

0 = –0 and
±∞ = –±∞.

0

1–1

00101110

01101010

/2

2–2

-/2

0001

0011

0101

01111001

1011

1101

1111

±∞

14

Negation is trivial
To negate, flip horizontally.

Reminder: In 2’s
complement, flip all bits and
add 1, to negate. Works
without exception, even for
0 and ±∞. (They do not
change.)

0000

1000

1100

0

1–1

00101110

01101010

1/2

2–2

-1/2

0001

0011

0101

01111001

1011

1101

1111

0100

±∞

15

A new notation: Unary “/”
Just as unary “–” can be put before x to mean 0 – x,

unary “/” can be put before x to mean 1/x.

Just as we can write –x for 0 – x, we can write /x for 1/x. Pronounce it “over x”

Parsing is just like parsing unary minus signs.

– (–x) = x, just as / (/x) = x.
x – y = x + (–y), just as x ÷ y = x × (/y)

These unum number systems are always lossless

(no rounding error) under negation and reciprocation.

Arithmetic ops + – × ÷ are finally put on equal footing.

16

Reciprocation is trivial, too!
To reciprocate, flip vertically.

Reverse all bits but the first
one and add 1, to
reciprocate. Works without
exception. +1 and –1 do not
change.

0000

1000

1100

0

1–1

00101110

01101010

/2

2–2

-/2

0001

0011

0101

01111001

1011

1101

1111

0100

/0

17

The last bit serves as the ubit

0000

0100

1000

1100

ubit = 0 means exact
ubit = 1 means the
open interval between
exact numbers.
“uncertainty bit”.

/0

0

1–1

00101110

01101010

/2

2–2

-/2

0001

0011

0101

01111001

1011

1101

1111 Example: This means the
open interval (½, 1). Or (get
used to it), (/2, 1).

18

Back to kinematics, with exact 2k

Split one dimension at a time.
Needs only 1600 function
evaluations (microseconds).

Display six 2D graphs of c versus s
(cosine versus sine… should
converge to an arc)

Here is what the rigorous bound
looks like after one pass.

Information = /uncertainty.

Uncertainty = answer volume.

Information increases by 1661×

19

Make a second pass

Still using ultra-low precision

Starting to look like arcs (angle
ranges)

457306 function evaluations
(milliseconds if no parallelism used)

Information increases by a factor of
3.7×106

20

A third pass allows robot decision

Transparency helps display 12
dimensions, 2 at a time.

Starting to look like arcs (angle
ranges).

6 million function evaluations
(milliseconds, with parallelism)

Information increases by a factor
of 1.8×1011

Remember, this is a rigorous
bound of all possible solutions.
Gradient-type searching with
floats can only guess.

21

Unums II
Universal Numbers. They are like the
original unums, but:

•  Fixed size
•  Not an extension of IEEE floats
•  ULP size variance becomes sets
•  No redundant representations
•  No wasted bit patterns
•  No NaN exceptions
•  No penalty for using decimals!
•  No errors in converting human-

readable format to and from
machine-readable format.

An example
unum set
with 1, 2, 5,
10, 20,… as
the “lattice”

21

22

Time to get serious
What is the best possible use of an 8-bit byte for real-valued calculations?

Start with kindergarten numbers:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Divide by 10 to center the set about 1:
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

This has the classic problem with decimal
IEEE floats: “wobbling precision.”

Deviations from smooth
exponential lead to
information loss

set member

value

23

Reciprocal closure cures
wobbling precision

Unite set with the reciprocals of
the values, guaranteeing closure:

0.1, /9, 0.125, /7, /6, 0.2, 0.25,
0.3, /3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1, /0.9, 1.25, /0.7, /0.6, 2, 2.5,
3, /0.3, 4, 5, 6, 7, 8, 9, 10

That’s 30 numbers. Room for 33
more.

No “kinks”!

set
member

value

24

“Tapered Precision”
reduces relative
accuracy for
extreme
magnitudes,
allowing larger
dynamic range.

1

/0.9
1.25
/0.7
/0.6
2

2.5
3

/0.3
4

5
6
7

8
9

10
12.5
20

25
40

5080

10
00
0

10
6

10
10

10
20

10
50

10
10
0/0

•  Define the > 1. lattice points
•  Unite with 0
•  Unite with reciprocals
•  Unite with negatives
•  Unite with open intervals;

circle is complete
•  Populate arithmetic tables

25

Flat precision
makes table
generation and
fused operations
easier.

Imagine: custom
number systems for
application-specific
arithmetic

1

/0.9
1.25
/0.7
/0.6
2

2.5
3

/0.3
4

5
6
7

8
9

10

6070809010
0

/0
.0
09/0

•  A table need only contain
entries for one “decade,”
1 to 10

•  Power of 10 determined via
integer divide, instead of
having a separate bit field

26

8-bit unum means 256-bit SORN

Ultra-fast parallel arithmetic on arbitrary subsets of the real
number line. Ops can still finish within a single clock cycle,

with a tractable number of parallel OR gates.

0 (maxreal, ∞)
10000000

±∞
11000000 01000000 1111111100000000

… …

… …

1 –1
… …

… …

64 bits 64 bits 64 bits 64 bits

unums:

SORN:

27

16-bit SORN for + – × ÷ ops

Connected sets remain connected under + – × ÷, even division by zero!

Run-length encoding of a block of 1s amongst 256 bits only takes 16 bits.

00000000 00000000 means all 256 bits are 0s
11111111 11111111 means all 256 bits are 1s
00000010 00000110 means there is a block of 2 1s starting at position 6

2 6

Trivial logic still serves to negate and reciprocate compressed form of value.

28

Table look-up background
In 1959, IBM introduced
its 1620 Model 1
computer, internal
nickname “CADET”.

All math was by table
look-up.

Customers decided
CADET meant “Can’t
Add, Doesn’t Even Try.”

29

Table look-up requires ROM

Low-precision rigorous math is possible at
100x the speed of sloppy IEEE floats.

•  Read-Only Memory needs very
few transistors.

•  Billions of bits per chip, easy
•  Imagine the speed… all

operations take 1 clock! Even xy.
•  1-op-per clock architectures are

much easier to build, less silicon
•  Single argument-operations

require tiny tables. Trig, exp, you
name it.

30

Cost of + – × ÷ tables
•  Addition table: 256×256 entries, 2-byte entries = 128 kbytes
•  Symmetry cuts that in half, if we sort x and y inputs so x ≤ y
•  Subtraction table: just use negative of addition table
•  Multiplication table: same size as addition table
•  Division table: just use reciprocal of multiplication table!
•  Estimated chip cost: < 0.01 mm2, < 1 milliwatts

128 kbytes total for all four basic ops.
Another 128 kbytes if we also table xy.

31

What about, you know, decent
precision? Is 3 decimals enough?

IEEE half-precision (16 bits) has ~3 decimal accuracy
9 orders of magnitude, 6×10–5 to 6×104.
Many bit patterns wasted on NaN, negative zero, etc.
Can a 16-bit unum do better, and actually express decimals exactly?

0000000000000000

0100000000000000

1000000000000000

1100000000000000

/0

0

+1–1

65536 bit patterns. 8192 in the “lattice”.
Start with set = {1.00,1.01, 1.02,…, 9.99}.
Unite with reciprocals.
While set size < 16384: unite with 10× set.
Clip set to 16384 elements centered at 1.00
Unite with negatives.
Unite with open intervals between exacts.
What is the dynamic range?

32

Answer: 10 orders of magnitude

~8.7×10–6 to ~1.1×105

This is the
Mathematica code for
generating the number
system.

Notice: no “gradual
underflow” issues to
deal with. No
subnormal numbers.

33

IEEE Intervals vs. SORNs
•  Interval arithmetic with IEEE 16-bit floats takes 32 bits

•  Only 9 orders of magnitude dynamic range
•  NaN exceptions, no way to express empty set
•  Uncertainty grows exponentially in general

•  SORNs with connected sets takes 32 bits

•  10 orders of magnitude dynamic range
•  No indeterminate forms; closed under + – × ÷
•  Automatic control of information loss
•  Uncertainty grows linearly in general

34

Future Directions
•  Create 32-bit and 64-bit unums with new approach; table

look-up still practical?
•  Compare with IEEE single and double
•  General SORNs need run-length encoding.
•  Build C, D, Julia, Python versions of the arithmetic
•  Test on various workloads, like

•  n-body
•  ray tracing
•  FFTs
•  linear algebra done right (complete answer, not sample answer)
•  other large dynamics problems

35

Summary
A complete break from IEEE floats may be
worth the disruption.

•  Makes every bit count, saving storage/bandwidth,

energy/power
•  Mathematically superior in every way, as good as

integers
•  Rigor without the overly pessimistic bounds of

integer arithmetic

/0

0

+1–1

This is a shortcut to exascale.

