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“Unums version 2.0” 
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Break completely from 
IEEE 754 floats and gain: 
•  Computation with mathematical rigor 
•  Robust set representations with a fixed number of bits 
•  1-clock binary ops with no exception cases 
•  Tractable “exhaustive search” in high dimensions 

Strategy: Get ultra-low precision right, then work up. 
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All projective reals, using 2 bits 

00

01

10

11

“±∞” is “the point at 
infinity” and is 
unsigned. 
 
Think of it as the 
reciprocal of zero.  

±∞

0

+–
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Linear depiction 
exact 

0 
all positive reals 

(0, ∞) 
all negative reals 

(–∞, 0) 

00 01

±∞ 

10 11

Maps to the way 2s complement integers work! 
 
Redundant point at infinity on the right is not shown.  
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Absence-Presence Bits 
0 (open shape) if absent 
from the set, 
1 (filled shape) if present in 
the set. 
 
Rectangle if exact, oval or 
circle if inexact (range) 
 
Red if negative, blue if 
positive 

Forms the power set of 
the four states. 

24 = 16 possible subsets 
of the extended reals. 

00

!"

or 
# 

0 

01

!"

or 
# 

(0, ∞) 

11

!"

or 
# 

(–∞, 0) 

10

!"

or 
# 

±∞ 
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Sets become numeric quantities 

Closed under 
x + y  x – y 
x × y  x ÷ y 
 and…  xy 

Tolerates division by 0. 
No indeterminate forms. 
 
Very different from 
symbolic ways of dealing 
with sets. 

“SORNs”: Sets Of Real Numbers 

The extended positive reals, (0, ∞] 

All nonzero extended reals [–∞, 0) ∪ ( 0, ∞]  

All nonzero reals, (–∞, 0) ∪ (0, ∞) 

All nonpositive reals, (–∞, 0]  

All reals, (–∞, ∞) 

The point at infinity, ±∞ 

The unsigned values, 0∪ ±∞ 

The extended nonnegative reals, [0, ∞] 

The extended negative reals, [–∞, 0) 

The extended nonpositive reals, [–∞, 0] 

All extended reals, [–∞, ∞] 

All negative reals, (–∞, 0) 

All nonnegative reals, [0, ∞)  

Zero, 0 
All positive reals (0, ∞) 

The empty set, { } 
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No more “Not a Number” 
√–1 = empty set: 

0 / 0 = everything: 

∞ – ∞ = everything: 

1∞ = all nonnegatives, [0, ∞]: 

etc. 

Answers, as limit forms, are sets. We can express those! 
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Op tables need only be 4x4 

+ 

Note that three entries “blur”, 
indicating information loss. 

For any SORN, do table 
look-up for pairwise bits 
that are set, and find the 
union with a bitwise OR. 

+ 

parallel 
OR 
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Now include +1 and –1 

000

010

100

110

The SORN is 8 bits long. 
 
This is actually enough 
of a number system to 
be useful! 

±∞

0

+1–1

001111

011101

(0,1)

(1,∞)(–∞,–1)

(–1,0)
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Example: Robotic Arm Kinematics 
12-dimensional 
nonlinear system (!) 

Notice all values 
must be in [–1,1]  $ 
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“Try everything”… in 12 dimensions 

Every variable is in [-1,1], so 
split into [-1,0) and [0,1] and 
compute the constraint function 
to 3-bit accuracy. 
 
%= violates constraints"
%= compliant subset"
 
212 = 4096 sub-cubes can be 
evaluated in parallel, in a few 
nanoseconds. 
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One option: more powers of 2 

0000

0100

1000

1100

There is nothing special 
about 2. We could have 
added 10 and 1/10, or 
even π and 1/π, or any 
exact number. 
(Yes, π can be 
numerically exact, if we 
want it to be!) 

±∞

0

1–1

00101110

01101010

1/2

2–2

-1/2

0001

0011

0101

01111001

1011

1101

1111
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Note: sign bit is in the usual place 

0000

0100

1000

1100

The sign of 0 and ±∞ is 
meaningless, since 
 
0 = –0 and 
±∞  = –±∞. 

0

1–1

00101110

01101010

/2

2–2

-/2

0001

0011

0101

01111001

1011

1101

1111

±∞
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Negation is trivial 
To negate, flip horizontally.  
 
 
Reminder: In 2’s 
complement, flip all bits and 
add 1, to negate. Works 
without exception, even for 
0 and ±∞. (They do not 
change.) 

0000

1000

1100

0

1–1

00101110

01101010

1/2

2–2

-1/2

0001

0011

0101

01111001

1011

1101

1111

0100

±∞
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A new notation: Unary “/” 
Just as unary “–” can be put before x to mean 0 – x, 

unary “/” can be put before x to mean 1/x. 

 

Just as we can write –x for 0 – x, we can write /x for 1/x. Pronounce it “over x” 
 

Parsing is just like parsing unary minus signs. 
 

– (–x) = x, just as / (/x) = x. 
x – y = x + (–y), just as x ÷ y = x × (/y) 

 
These unum number systems are always lossless 

(no rounding error) under negation and reciprocation. 
 

Arithmetic ops  +  – × ÷  are finally put on equal footing. 
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Reciprocation is trivial, too! 
To reciprocate, flip vertically.  
 
 
 
Reverse all bits but the first 
one and add 1, to 
reciprocate. Works without 
exception. +1 and –1 do not 
change. 

0000

1000

1100

0

1–1

00101110

01101010

/2

2–2

-/2

0001

0011

0101

01111001

1011

1101

1111

0100

/0
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The last bit serves as the ubit 

0000

0100

1000

1100

ubit = 0 means exact 
ubit = 1 means the 
open interval between 
exact numbers. 
“uncertainty bit”. 

/0

0

1–1

00101110

01101010

/2

2–2

-/2

0001

0011

0101

01111001

1011

1101

1111 Example: This means the 
open interval (½, 1). Or (get 
used to it), (/2, 1). 
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Back to kinematics, with exact 2k 

Split one dimension at a time. 
Needs only 1600 function 
evaluations (microseconds). 

Display six 2D graphs of c versus s 
(cosine versus sine… should 
converge to an arc) 

Here is what the rigorous bound 
looks like after one pass. 

Information = /uncertainty. 

Uncertainty = answer volume. 

Information increases by 1661× 
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Make a second pass 

Still using ultra-low precision 

Starting to look like arcs (angle 
ranges) 

457306 function evaluations 
(milliseconds if no parallelism used) 

Information increases by a factor of 
3.7×106 
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A third pass allows robot decision 

Transparency helps display 12 
dimensions, 2 at a time. 

Starting to look like arcs (angle 
ranges). 

6 million function evaluations 
(milliseconds, with parallelism) 

Information increases by a factor 
of 1.8×1011 

Remember, this is a rigorous 
bound of all possible solutions. 
Gradient-type searching with 
floats can only guess. 
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Unums II 
Universal Numbers. They are like the 
original unums, but: 
 
•  Fixed size 
•  Not  an extension of IEEE floats 
•  ULP size variance becomes sets 
•  No redundant representations 
•  No wasted bit patterns 
•  No NaN exceptions 
•  No penalty for using decimals! 
•  No errors in converting human-

readable format to and from 
machine-readable format. 

An example 
unum set 
with 1, 2, 5, 
10, 20,… as 
the “lattice”   

21 
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Time to get serious 
What is the best possible use of an 8-bit byte for real-valued calculations? 

Start with kindergarten numbers: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 
 
Divide by 10 to center the set about 1: 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,  
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
 
This has the classic problem with decimal 
IEEE floats: “wobbling precision.” 

Deviations from smooth 
exponential lead to 
information loss 

set member 

value 
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Reciprocal closure cures 
wobbling precision 

Unite set with the reciprocals of 
the values, guaranteeing closure: 
 
0.1, /9, 0.125, /7, /6, 0.2, 0.25, 
0.3, /3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
 
1, /0.9, 1.25, /0.7, /0.6, 2, 2.5,  
3, /0.3, 4, 5, 6, 7, 8, 9, 10 
 
That’s 30 numbers. Room for 33 
more. 

No “kinks”! 

set 
member 

value 
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“Tapered Precision” 
reduces relative 
accuracy for 
extreme 
magnitudes, 
allowing larger 
dynamic range. 

1

/0.9
1.25
/0.7
/0.6
2

2.5
3

/0.3
4

5
6
7

8
9

10
12.5
20

25
40

5080

10
00
0

10
6

10
10

10
20

10
50

10
10
0/0

•  Define the > 1. lattice points 
•  Unite with 0 
•  Unite with reciprocals 
•  Unite with negatives 
•  Unite with open intervals; 

circle is complete 
•  Populate arithmetic tables 
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Flat precision 
makes table 
generation and 
fused operations 
easier. 
 
Imagine: custom 
number systems for 
application-specific 
arithmetic 

1

/0.9
1.25
/0.7
/0.6
2

2.5
3

/0.3
4

5
6
7

8
9

10

6070809010
0

/0
.0
09/0

•  A table need only contain 
entries for one “decade,” 
1 to 10 

•  Power of 10 determined via 
integer divide, instead of 
having a separate bit field 
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8-bit unum means 256-bit SORN 

Ultra-fast parallel arithmetic on arbitrary subsets of the real 
number line. Ops can still finish within a single clock cycle, 

with a tractable number of parallel OR gates. 

0 (maxreal, ∞) 
10000000

±∞ 
11000000 01000000 1111111100000000

… … 

… … 

1 –1 
… … 

… … 

64 bits 64 bits 64 bits 64 bits 

unums: 

SORN: 
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16-bit SORN for + – × ÷ ops 

Connected sets remain connected under + – × ÷, even division by zero!  

Run-length encoding of a block of 1s amongst 256 bits only takes 16 bits. 

00000000 00000000 means all 256 bits are 0s 
11111111 11111111 means all 256 bits are 1s 
00000010 00000110 means there is a block of 2 1s starting at position 6 

2 6 

Trivial logic still serves to negate and reciprocate compressed form of value. 
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Table look-up background 
In 1959, IBM introduced 
its 1620 Model 1 
computer, internal 
nickname “CADET”. 
 
All math was by table 
look-up. 
 
Customers decided 
CADET meant “Can’t 
Add, Doesn’t Even Try.” 
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Table look-up requires ROM 

Low-precision rigorous math is possible at 
100x the speed of sloppy IEEE floats.  

•  Read-Only Memory needs very 
few transistors. 

•  Billions of bits per chip, easy 
•  Imagine the speed… all 

operations take 1 clock! Even xy. 
•  1-op-per clock architectures are 

much easier to build, less silicon 
•  Single argument-operations 

require tiny tables. Trig, exp, you 
name it. 
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Cost of + – × ÷ tables 
•  Addition table: 256×256 entries, 2-byte entries = 128 kbytes 
•  Symmetry cuts that in half, if we sort x and y inputs so x ≤ y 
•  Subtraction table: just use negative of addition table 
•  Multiplication table: same size as addition table 
•  Division table: just use reciprocal of multiplication table! 
•  Estimated chip cost: < 0.01 mm2, < 1 milliwatts 

128 kbytes total for all four basic ops. 
Another 128 kbytes if we also table xy. 
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What about, you know, decent 
precision? Is 3 decimals enough? 

IEEE half-precision (16 bits) has ~3 decimal accuracy 
9 orders of magnitude, 6×10–5 to 6×104. 
Many bit patterns wasted on NaN, negative zero, etc. 
Can a 16-bit unum do better, and actually express decimals exactly? 

0000000000000000

0100000000000000

1000000000000000

1100000000000000

/0

0

+1–1

65536 bit patterns. 8192 in the “lattice”. 
Start with set = {1.00,1.01, 1.02,…, 9.99}. 
Unite with reciprocals. 
While set size < 16384: unite with 10× set. 
Clip set to 16384 elements centered at 1.00 
Unite with negatives. 
Unite with open intervals between exacts. 
What is the dynamic range? 
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Answer: 10 orders of magnitude 

~8.7×10–6 to ~1.1×105 

This is the 
Mathematica code for 
generating the number 
system. 
 
Notice: no “gradual 
underflow” issues to 
deal with. No 
subnormal numbers. 
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IEEE Intervals vs. SORNs 
•  Interval arithmetic with IEEE 16-bit floats takes 32 bits 

•  Only 9 orders of magnitude dynamic range 
•  NaN exceptions, no way to express empty set 
•  Uncertainty grows exponentially in general 

 
•  SORNs with connected sets takes 32 bits 

•  10 orders of magnitude dynamic range 
•  No indeterminate forms; closed under + – × ÷ 
•  Automatic control of information loss 
•  Uncertainty grows linearly in general 
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Future Directions 
•  Create 32-bit and 64-bit unums with new approach; table 

look-up still practical? 
•  Compare with IEEE single and double 
•  General SORNs need run-length encoding. 
•  Build C, D, Julia, Python versions of the arithmetic 
•  Test on various workloads, like 

•  n-body 
•  ray tracing 
•  FFTs 
•  linear algebra done right (complete answer, not sample answer) 
•  other large dynamics problems 
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Summary 
A complete break from IEEE floats may be 
worth the disruption. 
 
•  Makes every bit count, saving storage/bandwidth, 

energy/power 
•  Mathematically superior in every way, as good as 

integers 
•  Rigor without the overly pessimistic bounds of 

integer arithmetic 

/0

0

+1–1

This is a shortcut to exascale. 


