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Abstract

In measuring performance of parallel computers, the usual method is to choose a problem and test
execution time as the processor count is varied. This model underlies definitions of “speedup,” “effi-
ciency,” and arguments against parallel processing such as Ware’s formulation of Amdahl’s law. Fixed
time models use problem size as the figure of merit. Analysis and experiments based on fixed time instead
of fixed size have yielded surprising consequences: The fixed time method does not reward slower proces-
sors with higher speedup; it predicts a new limit to speedup, more optimistic than Amdahl’s; it shows
efficiency independent of processor speed and ensemble size; it sometimes gives non-spurious superlinear
speedup; it provides a practical means (SLALOM) of comparing computers of widely varying speeds
without distortion.

1. Introduction

The main reason we use computers is speed. True, they often produce work of higher quality and reli-
ability than other means of doing a task, but these are really just forms of speed. With enough time, pencil-and-
paper calculations can match the quality and reliability of a computer. It is the speed of computers that lets us do
things we otherwise would not try.

The reason we use parallel computers instead of serial computers is also for speed. This seems so
obvious that we seldom belabor the point. Yet, we base everything we do in parallel computing on this motive.
The problem is that our usual definition of “speed” is not on very firm ground. Most papers skirt the issue of
absolute speed and instead report “speedup,” defining speedup strictly as time reduction.

The following cynical definition by Ambrose Bierce, from The Devil’s Dictionary (1911), shows the
absurdity of basing parallel performance on time reduction:

Logic, n. The art of thinking and reasoning in strict accordance with the limitations and incapacities of the
human misunderstanding. The basis of logic is the syllogism, consisting of a major and a minor premise
and a conclusion--thus:

Major Premise: Sixty men can do a piece of work sixty times at quickly as one man.
Minor Premise: One man can dig a post-hole in sixty seconds.
Conclusion: Sixty men can dig a post-hole in one second.

This may be called the syllogism arithmetical, in which, by combining logic and mathematics, we obtain
a double certainty and are twice blessed.
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Bierce used this reasoning as humor almost a century ago. Now we call the flaw in the reasoning
“Amdahl’s law” and treat it as a serious obstacle to parallel performance. By scaling the problem to sixty post-
holes, the absurdity disappears and the sixty men are sixty times as productive as a single man. My thesis is that
parallel performance should be measured by the work done in fixed time, and not by time reduction for a fixed
problem.

2. Myths of Performance Measurement

It seems clear that speed, for a computer, is work divided by time. But, what is “work”? The following
common “myths” of speed and performance measurement illustrate difficulties involved in defining work:

2.1 Myth: The “work” is the operation count.

A Fortran example shows the fallacy of this idea:

Figure 1. FLOP-Count Counterexample

The only floating point operations are in the DO 1 loop, which has order N complexity. By current convention
for measuring MFLOPS, the work in this problem is 103. However, the DO 2 loop has integer operations and is
of order N2 complexity. Even the oldest digital computers would be misjudged by ignoring the relative cost of
106 integer operations, despite their much higher times for floating point operations. But, the DO 3 loop is the

most troublesome since it has order N3 complexity and has no “operations” by common measures. Yet, memory
operations are the most commonly-used instructions on computers.

The earliest computers were like humans in the respect that they took much longer to do arithmetic,
especially multiplies, than to read operands or write results. The situation we now see, compute-intensive
processors much faster at arithmetic than data motion, is not intuitive. In the early days of computing, gates
(vacuum tubes) dominated both the system cost and the execution time; the wires connecting them were cheap
by comparison. Current high-end computer costs and times are dominated by the connections, and the gates are
cheap by comparison. Even recent numerical analysis texts base their complexity analysis on the economics of
outdated arithmetic-bound machines.

2.2 Myth: The best serial algorithm defines the least work necessary.

In an example from Parkinson [22], elegantly expressed in Fortran 90, a serial processor might do more
work than a parallel ensemble:

Figure 2. “Best Serial Algorithm” Counterexample

REAL A(1024),B(1024),C(1024)
A = B + C
END

      PARAMETER (N=1000, N2=N*N, N3=N*N)
      REAL A(N), B(N)
      INTEGER L(N3), M(N3)
      DO 1 I = 1, N
 1      A(I) = B(I)*B(I)
      DO 2 I = 1, N2
 2      L(I) = N2 - I
      DO 3 I = 1, N3
 3      M(I) = L(I)
      END



A serial processor can only do the operations with some type of loop that references each element in
turn, as stored in linearly addressed memory. A data-parallel computer like a MasPar or Connection Machine
does nothing so complicated. Each of 1024 processors only needs to compute three address references and one
addition, with no loop management. One could argue that the elements had to be dispersed to the 1024 proces-
sors in the first place. But, this isn’t true in the context of a larger application that contains the operation.
Which defines the minimum work? The serial computer that must add, store the result, increment three
memory pointers, test a loop counter, and branch? Or, a parallel computer that simply adds and stores the
result? The example in Section 2.1 shows we cannot neglect simple overhead-type operations, no matter how
trivial they may seem. A “proof” of the nonexistence of superlinear speedup by Faber, Lubeck, and White [10]
relies implicitly on the assumption there is no savings from diminished loop overhead.

A similar counterexample occurs in tree-search problems. When a depth-first search is divided to run
on a parallel computer, the resulting search is partly breadth-first. The breadth-first search sometimes does less
work to find a particular goal. To reproduce the parallel search pattern on the serial computer involves extra
serial work to change the entire “stem” in skipping from one part of the tree to another.

2.3. Myth: Peak MFLOPS ratings correlate well with application MFLOPS.

Counterexamples to this are rampant. To use a recent example that compares four very different com-
puters, consider the following result from the “EP” Monte Carlo simulation taken from the NAS Parallel
Benchmarks [4]:

Table 1a. Failure of Peak MFLOPS as Performance Predictor

Where is the pattern? All except the nCUBE use pipelined vector arithmetic. All except the CRAY are
highly parallel. (This benchmark does almost no communication, so interprocessor speed ratings can be
neglected.)

The nCUBE 2 exceeds “peak” speed because 64-bit floating point multiply-add operations determine
the rated MFLOPS, but the benchmark involves roots, multiplies modulo 246, and logarithms counted as 12,
19, and 25 operations. The NAS weights are apparently based on CRAY Y-MP measurements. Since the
nCUBE 2 does those things in less than 12, 19, and 25 times the time for a floating-point multiply or add, it
exceeds its “peak speed.”

A partial resolution for this case appears if you use “peak memory bandwidth,” the rate at which all the
processors can use main memory (not cache) under ideal conditions:

Table 1b. Example of Memory Bandwidth as Performance Predictor

The bottom line is consistent enough to suggest that peak bandwidth instead of peak MFLOPS is a
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better simplistic predictor for this application. If peak MFLOPS correlated even weakly with observed rankings
of computers, it would still be a practical tool for predicting performance. Alas, the failure of peak ratings even
to rank computers correctly happens often in practice.

3. Background and Definitions

The previous section illustrated some of the current difficulties in assessing computer performance. The
following section discusses historical attempts to analyze performance, especially parallel speed improvement.
The definitions at the end of this section represent an attempt to provide a new theoretical basis for performance
analysis that avoids some of the classical dilemmas.

3.1 A “Speedup” History

Twenty years ago, Ware [31] first summarized Amdahl’s [2] arguments against multiprocessing as a
speedup formula, popularly known as Amdahl’s law. Amdahl’s law shows a limit to performance enhancement.
It was the only well-known parallel performance criterion until its underlying assumptions were questioned by
Benner, Montry, and myself in our work at Sandia National Laboratory [14]. Based on experimental results with
a 1024-processor system, we revised the assumptions of Amdahl and proposed the scaled speedup principle [13,
14]. Our argument was, and is, that parallel processing allows us to tackle previously out-of-reach problems. So,
as problem size is increased with computing power, the serial component as defined by Amdahl and Ware
cannot be regarded as constant.

Since then, researchers have sought a better understanding of parallel speedup. In 1989, Van-Catledge
[30] and Zhou [34] studied the relation between Amdahl’s law and scaled speedup. Eager et al. [9] studied
speedup versus efficiency. Barton and Withers [5] developed a speedup model which considers the manufactur-
ing cost of processors as a performance factor. In 1990, Karp and Flatt [18] suggested using the Amdahl-type
serial fraction in an ad hoc sense. Worley showed the time constraints of scaled speedup [9]. Sun and Ni studied
the relation between different speedup models [27], and Sun proposed a new metric to show aspects of the
performance not easily seen from other metrics [29].

The definitions of “speedup” and “efficiency” are ingrained in the parallel processing literature. Speedup
is the time on one processor divided by the time on P processors. Authors almost universally define speedup as
sequential execution time over parallel execution time. The chosen sequential algorithm is the best sequential
algorithm available, not the parallel algorithm run on one processor. (Sometimes the terms absolute speedup
and relative speedup distinguish these approaches [29], with the latter meaning comparison with the parallel
algorithm run on one processor.)

Efficiency is usually “speedup divided by P.” For vector computers, efficiency often means operations
per second divided by peak theoretical operations per second. Generally, speedup and efficiency depend on both

N and P. Suppose C(N) represents the complexity of the best serial algorithm for a size N problem, and C
P
(N) is

the complexity of the parallel algorithm run on P processors. Then

speedup (N, P) = C(N) / C
P
(N) (1)

efficiency (N, P) = speedup (N, P) / P (2)

Our scientific instincts tell us to control as many experimental variables as possible, and the most natural
quantity to fix is N. It is becoming increasingly apparent that the restriction to constant N, though simple, is
flawed and often misleading. In trying to find alternative definitions, we have found that time, not problem size,
often serves better as a control variable when making scientific comparisons.

Forgetting for a moment the definition of speedup as “time reduction” that has become so ubiquitous in
our industry, the English meaning would simply be “increase in speed.” “Increase” is probably best translated
mathematically as a ratio instead of a difference. We might define speedup as the speed on P processors divided



by the speed on one processor. Only when work is constant does this simplify to the parallel processing defini-
tion of speedup [29].

3.2 Can We Define “Work”?

Although the goal of algorithm-independent, architecture-independent expressions for work is a laudable
one, it is generally untenable.

The use of “speedup” as the ratio of times avoids the need for a rigorous definition of computational
work, since the work in the numerators cancels out. To broaden the concept of speedup to variable problem
sizes, we will need a practical definition of work. Operation count is an imperfect measure of computational
work, since it does not standardize across computers. The counterexamples to Myths 1 and 2 illustrate this.

Even a simple word fetch from memory takes effort that varies with the computer. Is there error detec-
tion? Error correction? How large is the total memory containing the datum? Does the word size match the size
of the data bus? Is the fetch word-aligned? In cache? Pipelined? Interleaved across memory banks?

Arithmetic is notoriously different from one computer to another. Specifying precision helps, but by no
means creates a standard unit of “work.” Computers with “64-bit arithmetic” might use from 47 to 56 bits for
the mantissa, with the larger mantissas associated with more logic gates and precision. Not even use of the IEEE
floating-point standard format promises fair comparison, since IEEE format does not ensure IEEE execution
rules.

3.3 The “Standard Computer”

The most common approach is to pick a computer as representative, and define its execution time as the
work. We see “VAX Units of Performance” and grand challenges that take work measured in “CRAY-centu-
ries.” As the counterexample to Myth 3 shows, picking a “standard computer” is hazardous business. In measur-
ing the performance of homogeneous MIMD computers, one usually picks a single processor of the ensemble as
the standard for comparison. Even then, system resources seldom scale perfectly with the number of processors.

Historically, people have assumed a “standard architecture computer,” one that typifies the computers
available at a given time. In the 1960’s, this meant one could simply count floating-point multiplications in
numerical algorithms and ignore everything else. By the 1970’s, floating-point multiplies and adds had de-
creased to about the same cost. Both appeared in work measures based on “MFLOPS.” The VAX-11/780 was
commonly adopted as a standard for comparison. Since about 1980, scientific computers have taken longer to
move data to and from main memory than to complete either type of floating point operation. Yet, our work
measures have not caught up, and complexity analysis continues to concentrate on the quantity of arithmetic.
The NAS Parallel Kernels [4] and Livermore Kernels [20] still use work measures based on weights for various
types of floating-point arithmetic, where those weights follow from experience with the CRAY X–MP and
CRAY Y–MP. To further complicate matters, the variety of machines commercially available is now far too
great to hope for an application-independent performance ratio to a “standard architecture computer.”

For now, we content ourselves with comparing single processors with collections of the same type in an
ensemble. Even this restriction admits a simplification we call “The Flat Memory Approximation.”

3.4 The Flat Memory Approximation

There are always limits on N for the coefficient fit. A common simplification in performance evaluation
is to assume the complexity measure applies beyond the set of measurable sizes. When N becomes so large that
the problem no longer fits in main memory, the computer must use secondary storage (either explicitly, or
automatically via virtual memory). The coefficients in the functional form appear to increase for larger N, which
is another way of saying that the functional form is too simple. It needs more terms to distinguish different
memory reference types. Data caches have the opposite effect on the coefficient values. Figure 3 shows typical
behavior for a computer with a data cache and virtual memory.



Fig. 3. The Flat Memory Approximation

The program listing probably does not reveal the functional form of caching or virtual memory costs,
making analysis very difficult. Even explicit use of secondary storage is hard to quantify, since it is usually
mechanical and has random latency. So, many authors implicitly make the following assumption:

The Flat Memory Approximation: The empirical complexity for problems that fit
local memory serves for all problem sizes.

The Flat Memory Approximation is like the assumption that the Earth is flat. For many everyday activi-
ties, like estimating short distances, a planar view of the world simplifies life at little cost of accuracy. If we
scale up the problem to distances of thousands of miles or down to a few inches, the flat Earth assumption gets
us into trouble.

3.5 Serial Complexity

Assume we have picked a representative computer. We wish to know work as a function of N, the
problem size. Examination of the control flow of a sequential algorithm on one processor of an ensemble yields
an expression for the complexity C(N). All that matters is that the expression has the correct functional form. If
a program contains even one loop construct containing a seemingly trivial operation of order N5, then the ex-
pression must contain a term of that order. Knuth [19] provides dozens of examples of classical complexity
analysis for serial algorithms.

The coefficients in the algebraic expression for C(N) can then be determined by experiment. Fitting
timing curves to data avoids the need for operation weighting. For instance, there is disagreement over how to
count a square root. Is it a single operation, as suggested by VAX-type architectures? Four operations, as de-
fined for the Lawrence Livermore Kernels [20]? Twelve operations, as defined for the NAS Parallel Bench-
marks [4]? It does not matter for purposes of performance evaluation. All that matters is that the expression for
C(N) contain enough adjustable coefficients to be able to fit the behavior of that serial algorithm on that com-
puter.

3.6 Parallel Complexity

The complexity of the algorithm chosen for a P-processor version of a program is C
P
(N). Its functional

form will usually be different from that of C(N), and the coefficients of like terms will almost surely be differ-
ent. The fallacy of assuming C

1
(N) = C(N) is well-known, but one still sometimes reads papers that ignore this

distinction. Generally, C
1
(N) > C(N) since the former incorporates parallel overhead.

Moler [21] was one of the first people to analyze performance using fitted formulas for C
P
(N). Like

serial complexity, parallel complexity is found by empirical fit to a formula determined by analysis of the
algorithm.
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3.7 The Canonical Scalable Problem

The “canonical scalable problem” is one with time cost of the form

C
P
(N) = A + B(N) / P. (3)

In this simple model, all work is either completely serial or completely parallel, communication costs
are constant as P increases, and all the work that scales with N is parallel work. Despite its simplicity, the
canonical scalable problem model serves well to test definitions of speedup and efficiency.

4. Speedup Models

With the definitions of the preceding section in place, we can compare and contrast the traditional
definition of “speedup” with its more recent variants.

4.1 Fixed Size Speedup

The fixed size speedup fixes the value of N as P is varied. N = N
0
 is typically the size of the largest

problem that conveniently fits into primary memory.

fixed size speedup (P) = C(N
0 
) /C

P
 (N

0 
) (4)

Surprisingly few researchers recognize the two-dimensional nature of speedup data (dependence on both
N and P). One reason might be the wish to measure the speedup of complicated programs strictly by experi-
ment, and an analytic expression for the complexity might be difficult to find.

The traditional “speedup graph” is of the form

Figure 4a. Typical Speedup Curve

Sometimes, a family of curves is presented for different problem sizes, with the larger problems closer
to the idealized “linear” speedup. Since not all problem sizes fit on all ensemble sizes, each curve will only
cover a partial range of P values:
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Figure 4b. Typical Treatment of Speedup for Scaled Problem Size

The treatment shown in Figure 4b is a struggling form of scaled speedup, but the use of a set of curves
obscures the scaling. We suggest a more straightforward approach in the next section.

4.2 Scaled Speedup

Not all computing problems scale. An example might be medical tomography, where a computer turns a
set of x-ray readings into a three-dimensional density map for perusal by physicians. There is an upper limit to
the performance demanded for such a task, imposed by the limit on how much data can be understood for
purposes of medical decisions. More powerful computers can reduce execution time, but there is little medical
point in reducing the time below a few seconds.

More common, however, is the case where added computing power allows us to tackle a more difficult
version of the problem of interest. One might want more grid points in a finite difference model, higher-order
numerical methods, or more detailed physics.

In the early days of hypercube computers, it was common to scale the problem with the number of
processors, but measure the resulting speedup in an unclear manner. Researchers would calculate MFLOPS
rates based on how fast a serial processor would run the problem if it had enough memory (the Flat Memory
Approximation). Usually, they would assume the uniprocessor MFLOPS rate to be constant across all problem
sizes. They would then declare the ratio of parallel to serial MFLOPS rate to be the speedup. This represents a
conceptual leap from the traditional definition of speedup, however, and must be regarded differently.

In its usual sense, “scaled speedup” means that N increases with P. By how much? If N
0
 is the size of

problem that just fits in the local memory of a single processor, then N is usually scaled to just fit the total local
memory of P processors. If the storage is proportional to N

0 
, then P processors run a size PN

0
 problem. The

scaled speedup is

scaled speedup(P) = C(PN
0
) / C

P 
(PN

0 
) (5)

Note that measuring the denominator in (5) might require the Flat Memory Approximation, since PN
0

might be too large a problem for a single processor in the ensemble. For this example, and many scaled speedup
formulas, there is no bound to speedup as P goes to infinity. This cheerful result must be accompanied with at
least two major cautions. First, there is seldom a practical need for a problem size N =  PN

0
  beyond some limit.

Eventually, the quality of the answer will reach a point where no further increase in complexity is justified.
Second, the execution times usually increase for the parallel system when problem size is scaled linearly. It is
typical in scientific problems that work grows superlinearly in the number of variables. Even with P times the
processing power, a problem on P processors with PN

0
  variables will take longer than on a single processor.

This growth in execution time is unrealistic, since we tend to solve only those problems on computers that fit
within the limits of human patience.
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Among the early users of the scaled speedup concept (in some form) were C. Seitz [24], J. Gustafson
[13, 14], and C. Moler [21], primarily with the first-generation hypercube computers. The Sandia results on the
1024-processor system [14] were stated in both fixed and scaled terms. The unfortunate tendency to present the
Sandia results as a “contradiction” of Amdahl’s law led to many efforts to unify the speedup models (4) and (5)
above [18, 27, 28, 34].

4.3 The Fixed Time Model

The idea that time should be fixed when benchmarking scalable problems was first presented in [13].
(Worley [32] had earlier noted the effect of fixed time benchmarking on the solution of partial differential
equations on ensemble computers.) The distinction between scaled speedup and fixed time speedup appeared
around 1988, and was formally clarified by Sun [28]. Some people use the term “scaled speedup” to mean any
measure that allows the problem size to change. Here, we restrict it to the case where the memory requirements
scale linearly with the number of processors. In the fixed time model, it is the work that increases linearly with
the number of processors, not the storage.

We can define the fixed time speedup as follows:

fixed time speedup (P) = C(N
P
) / C

P
( N

P 
) (6a)

where NP is chosen to be the maximum value of N satisfying

C
P 
(N) ≤  C (N

0 
) (6b)

Solving (6b) for N generally calls for numerical methods, or simple trial-and-error with a program that
reports its execution time. Note that architectural features such as memory banks and vector registers tend to
create “sawtooth” patterns in the performance, so methods to find the maximum N must consider complexity
measures that are not monotone increasing. This requirement unambiguously defines a problem size such that
the parallel time is very close to the time for the serial execution. Hence,

fixed time speedup (P) ≈ C( N
P 

) / C( N
0 
) (7)

4.4 Historical Basis for Fixed Time Measurement

The idea that run times stay roughly constant as computers increase in speed seems like common sense.
Yet, I have had to argue this point with people who insist they are only interested in reducing execution time of
problems they are currently running. Historical papers on computing, even some much older than the following,
show a different goal [1, 3, 25]:

Since an expert [human] computer takes about eight hours to solve a full set of eight equations
in eight unknowns, k is about 1/64. To solve twenty equations in twenty unknowns should thus
require 125 hours…  The solution of general systems of linear equations with a number of
unknowns greater than ten is not often attempted.

--Computing Machine for the Solution of large Systems of Linear Algebraic Equations
J. Atanasoff, 1940

. . .13 equations, solved as a two-computer problem, require about 8 hours of computing time.
The time required for systems of higher order varies approximately as the cube of the order.
This puts a practical limitation on the size of systems to be solved… It is believed that this
will limit the process used, even if used iteratively, to about 20 or 30 unknowns.



--A Bell Telephone Laboratories Computing Machine
F. Alt, 1948

Tracking a guided missile on a test range… is done on the International Business Machines (IBM)
Card-Programmed Electronic Calculator in about 8 hours, and the tests can proceed.

--The IBM Card-Programmed Electronic Calculator
J. W. Sheldon and L. Tatum, 1952

In 1933, John Vincent Atanasoff conceived and by 1939 had prototyped an electronic digital computer
for solving systems of simultaneous equations [3]. His goal was to solve a dense system of 30 equations in
about 8 hours. Now, 52 years later, that problem takes only a few microseconds on a CRAY-2, a speed improve-
ment of maybe a billion times. Hardly anyone would want to go to the trouble of using a CRAY-2 for a job
lasting only a few microseconds, however. A more typical use is the study of radar cross-sections, involving
solution of dense complex systems of about 10,000 equations. With careful use of disk transfers and block
solution methods, the CRAY sustains roughly 1 billion floating-point operations per second, and again takes
about 8 hours.

5. An Example Illustrating the Models

The scaled and fixed time speedup models are slightly more difficult to apply to experimental results
than the traditional fixed size model, because of the need for a complexity formula. However, the extra effort is
usually repaid by better insight into parallel scalability. To show how the different speedup models work in
practice, the following section applies all three models to an application for which the complexity function is
known.

Suppose a molecular mechanics simulation of size N has the following complexity:

Serial time C(N)   = 1000000 + 1000N + 24N2 µs (8)
Parallel time C

P
(N)= 1500000 + 1050N /P + 24N2 / P µs (9)

Serial storage = 100000 + 200N bytes (10)
Parallel storage = 125000 + 200N/P bytes (11)

(per processor)

where P is the number of processors. We can use this information to find, for P = 1, 2, 4, …, 1024:

1) Fixed size speedup for N = 1000.
2) Scaled (memory-bounded) speedup for N / P = 1000.
3) Fixed time speedup for a time of 26 seconds.

5.1 Traditional Speedup Example

The fixed size speedup is simply the serial time divided by the parallel time for N = 1000:

(12)

Speedup =

      =

1000000 + 1000N + 24N2

1500000 + 1050N/P + 24N2/P
26

2.55 + 24/P



This is a classic Amdahl model. As P goes to infinity, the speedup approaches 26/2.55 ≈ 10. The de-
nominator is the time for the serial method, not the time for the parallel method run on one processor.

Table 2. Fixed Size (Traditional) Speedup

 5.2 Scaled Speedup Example

If N / P = 1000, then the time a single processor would have needed to solve a problem that size is found
by using 1000P for N in the formula for serial time:

(13)

As is typical of scaled speedup formulas, equation (13) has no asymptotic limit as P goes to infinity.
However, the execution time on the parallel computer increases almost linearly with P, a distortion of the way
we would probably use the computer in practice.

       Table 3. Scaled Speedup Example
5.3 Fixed Time Example

The serial execution time for N = 1000 is about 26 seconds, so we pick this as the fixed time for the
parallel version. We need to solve the following equation for N:

(14)

Scaled
Speedup

1000000 + 1000(1000P) + 24(1000P)2

1500000 + 1050(N/P) + 24P(N/P)2

1 + P + 24P2

2.55 + 24P
for N/P = 1000          

=

=

1500000 + 1050N/P + 24N2/P ≈ 26000000

⇔ N ≈ –1050/P +   (1050/P)2+4(24500000)(24/P)
2(24/P)

P Scaled Speedup

1
2
4
8

16
32
64

128
256
512

1024

0.98
1.96
3.95
7.94

15.94
31.94
63.94

127.94
255.94
511.94

1023.94

The parallel overhead actually 
decreases as P  becomes large.

Note:

Time, sec

26.55
50.55
98.55

194.55
386.55
770.55

1538.55
3074.55
6146.55

12290.55
24578.55

P Speedup
1
2
4
8

16
32
64

128
256
512

1024

0.98
1.85
3.35
5.61
8.48

11.39
13.75
15.33
16.27
16.78
17.06

The parallel version on one
processor is typically slower
than the serial version.

Returns diminish rapidly
beyond about 8 processors.

Note:



Complexity formulas are seldom this easy to invert; we usually need numerical methods to find the
integer that comes closest to satisfying the fixed-time requirement. For each P, the resulting N gives the speedup
from (7). The denominator will always be about 26 seconds. Storage per processor follows from the formula
125000 + 200N/P.

Table 4. Fixed Time Speedup Example

The table does not go far enough to show the theoretical limit to fixed time speedup, but at some point
the storage per processor would have to be less than 125000 + 200, meaning that each processor internally
stores less than the data for one particle. The problem cannot be divided further without a major algorithm
change, and one cannot increase the problem size without increasing the execution time.

The examples show some salient features of the three types of speedup. The fixed size model shows we
get little benefit beyond a few doublings of the number of processors. The scaled model shows near-linear
speedup, but the execution time increases dramatically. The fixed time model shows excellent speedup, but
decreasing storage per processor that limits the benefit from using more processors. If space permitted, we
could add a term to C

P
(N) that increases with P (e.g. for communication cost), and show the effect on the three

speedups. In practice, terms that grow with P usually limit fixed time speedup, not the effect of too-fine prob-
lem subdivision.

6. Consequences of the Fixed Time Model

In using fixed time benchmarking, my colleagues and I have discovered several surprising consequences
of what appears to be a very simple idea. The next section gives a sampling of these consequences.

6.1 Consequence: Fixed Time Speedup Does Not Favor Slower Processors

The tendency of the traditional speedup measure to favor slower processors and poorly-coded programs
is well-known to researchers. Barton and Withers [5] studied speedup for four versions of the Intel iPSC on the
same parallel algorithm. The faster the processor, the lower the “speedup” from using more processors. There is
something profoundly “unfair” with the traditional speedup metric if it penalizes higher absolute speed.

Sun [29] discovered the remarkable result that for the canonical scalable problem, fixed time speedup is
independent of processor speed. Time is t = A + B(N) / P, so N = B–1 ( P( t–A)). By writing (1) in terms of t
instead of N, the fixed time speedup is

Canonical fixed time
speedup = [A + B (N)] / [A + B (N) / P] (15)

= [A + B ( B–1 ( P( t–A)))] / t

= [A + P ( t–A)] / t (16)

P Fixed-Time
Speedup

1
2
4
8

16
32
64

128
256
512

1024

0.98
1.92
3.80
7.57

15.11
30.18
60.33
120.6
241.2
482.5
964.9

Storage per
Processor

323K
266K
225K
196K
175K
160K
150K
143K
138K
134K
131K

Note:
Storage per
processor
slowly shrinks
as P increases.



The fixed time speedup does not depend on B. This result is less incredible if we recall the simplicity of
the assumption: t = A + B (N) / P assumes the communication terms are constant, and that all scalable terms
divide by P. In practice, fixed time awards a slightly higher speedup to slower processors, but far less than the
traditional model [29].

6.2 Consequence: Fixed Time Efficiency Unifies Performance Observations

If we divide (16) by P to get the usual definition of efficiency for the canonical scalable problem, the
formula has no dependence on B:

    Canonical fixed time
efficiency  = [A + P (t–A)] / Pt (17)

This is surprising, since it suggests efficiency depends on the constant overhead alone, and not the
processing speed! This is true for other definitions of “efficiency” as well. Consider the design of traditional
vector arithmetic. To do n operations, there is a startup time a followed by a time per operation, b. Total time is
a + bn. Since the work done is simply n ,

speed(n) = n / (a + bn) (18)
 ␣␣␣␣␣␣␣␣␣␣~ 1 / b as n > ∞ .

The asymptotic speed is sometimes called r ∞. Efficiency can be defined as the speed divided by r ∞, or
n / (a/b + n). A designer might wonder whether to double the number of pipeline stages, say, resulting in a time
for n operations of a + ( b / 2)n. This doubles r∞, but reduces the efficiency to n / (2a/b + n):

Figure 5. Traditional Efficiency (Function of Problem Size)

The conventional wisdom is that too many pipeline stages eventually destroys efficiency. In practice,
one cannot double the number of stages without increasing the clock rate. But, the above argument shows that
even if it were possible to do so, it would lead to less efficient use of the hardware for a given value of n.

Instead, however, suppose we examine vector processing efficiency as a function of time instead of
problem size. Since t = a + bn , we can state n in terms of the time: n = (a – t ) / b. Then

speed (t)  = [(a – t) / b] / t (18)

and

efficiency (t) = (a – t) / t
␣␣␣␣␣␣␣␣ = a / t – 1. (19)

1

problem size, n

efficiency

slower case

faster case



For a given execution time, efficiency does not depend on the value of b. See Figure 6. [Note that the
graph has changed from one with a y-intercept to one with an x-intercept, since the execution time must be at
least a, and efficiency is zero if t = a.]

Figure 6. (Canonical) Efficiency as a Function of Time

This suggests a very different course of action to the computer engineer. If one really can reduce the
value of b without affecting a, then the only consideration should be the hardware cost of that speed increase,
not loss of “efficiency.”

Experiments done by Carter et al. [6] on a MasPar MP-1 and an nCUBE 2 show very different efficiency
curves for four applications. Although the nCUBE is a coarser-grain computer, it paradoxically showed faster
rise to its asymptotic speed than the MasPar when plotted as a function of problem size. But, when the data
were plotted against time, the efficiency curves became almost identical. This result suggests that expressing
efficiency as a function of time removes dependence on both grain size and peak speed, and allows surprisingly
accurate predictions across different computer architectures.

6.3 Consequence: Fixed Time Measurement Creates a New Type of Superlinear Speedup

As a final example of a surprising result of fixed time performance evaluation, the fixed time model
creates a new source of superlinear speedup. In this context, “speed” means operations per second for some type
of operation; whatever the measure, we assume speed varies on each processor as a function of time. You can
think of the speed as a function of the subtask. If there are two subtasks, each growing with problem size N, and
each possible to run in parallel, then Figure 7 shows how the changing speed “profile” can increase performance
superlinearly.

This effect was first noted in [12]. The fraction of the time spent at speed r2 increases in the parallel
version, because that part grows faster than the part that runs at speed r1 (see Figure 7).

Figure 7. Fixed Time Superlinear Speedup
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Paradoxically, even if the speed of each subtask increases by less than a factor of P because of overhead,
the net speedup can be greater than P. There is a middle section of time that runs Pr1 / r2 times faster on the
parallel computer. If r1 > r2, the middle section runs more than P times faster because it has substituted faster
work for that time slot. This raises the average speedup. D. Krumme of Tufts University suggested the use of
the type of diagram shown in Figure 7 to resolve the seeming paradox. An excellent survey of superlinear
speedup effects is given by Helmbold and McDowell [17], but all are based on the fixed size speedup model.

It is not necessary that time be fixed for this effect to take place. It can happen whenever the problem
size changes with the number of processors. Changing N means the uniprocessor speed can change for a variety
of reasons, potentially raising the average speed.

6.4 Consequence: Fixed Time Predicts New Limits to Parallel Speedup

Amdahl predicted a limit of 1/s to parallel speedup, where s is a constant serial fraction. The revisionist
view, “Just make the problem larger!” removes that limit, but is almost as unrealistic in practice. If problems are
scaled in the number of variables, the work might grow faster than P and execution times will tend to infinity.
Except for the canonical scalable problem, the fixed time model predicts that communication and other parallel
overheads will eventually swamp the allotted time, setting a hard limit to the benefits of parallel processing.
That limit is almost always much higher than 1 / s, however. Even if there are no terms in C

P
(N) that increase in

P, the fixed time model can imply problem decomposition of less than one variable per processor, creating
another theoretical limit on parallelism. Example 5.3 illustrates this.

7. SLALOM: A Fixed Time Benchmark

The fixed time model began as a means of discussing application performance for papers on parallel
computing. In 1989, my colleagues and I decided to try to apply the concept to the notorious activity know as
benchmarking. It seemed to us that much of what had been lacking in industry-standard benchmarks stemmed
from the universal use of the traditional fixed size model. Also, we sought a full-scale application with which to
test the fixed time analysis of the preceding sections.

Benchmarks popular enough to last more than two or three years usually become mismatched to the
power of newer computers. Whetstones [7] are now so dated that the original driver must usually be changed by
a factor of a thousand to allow a problem size large enough to time accurately. The LINPACK benchmark [8]
was introduced for a problem of size 100, but has been altered to 300, then 1000, and “as large as fits in
memory” in an attempt to keep up with relentless hardware progress. The SPEC benchmark [26] has no provi-
sion for scaling, but is too recent to suffer the effects of the fixed size model. The “PERFECT” benchmark set
[23] takes the approach of removing outdated benchmarks and replacing them with more challenging problems,
making the data somewhat enigmatic.

With colleagues D. Rover, S. Elbert, and M. Carter, I began a search for a complete scientific application
that scales and might serve as the basis for a fixed time benchmark. A paper by Goral et al. [11] provided an
application, that of computing equilibrium radiation transfer on a closed interior, that scales in the number of
finite elements, or “patches” into which the surfaces is decomposed. From [11] we created a version that scales
automatically to run in one minute on any computer. For portability, we created versions in several languages
and for several architecture types (serial, vector, shared and distributed memory, single and multiple instruction
streams). Because the fixed time model reduces the Amdahl-type effects of speeding up just the compute-
intensive part of a job, we include input/output and setup times in the 60 seconds without distortion of the
results.

We announced the benchmark, called SLALOM, in November 1990 [15]. We distribute SLALOM
electronically by anonymous “ftp” to tantalus.scl.ameslab.gov. The acceptance by computer vendors and cus-
tomers has been more rapid than we anticipated. The list today has 94 entries that span the entire range of
computers [16]. A laptop computer solves a problem with 12 patches, and the largest supercomputers (both
massively parallel and vector) solve problems with over 5000 patches. The memory requirements adjust auto-



matically. We can compare machines as different as a Macintosh Classic, a CRAY Y-MP/8, a MasPar MP-1, a
SUN 4, an nCUBE 2, and a Myrias, in a manner that uses each computer appropriately. The times for program
loading, reading and writing mass storage, etc. that are usually eliminated from fixed size benchmarks can be
included in SLALOM without the hazard of having them dominate execution time as processor speed improves.

SLALOM has demonstrated Consequences 6.2 and 6.3 above [12]. Measurements by Carter [6] for the
nCUBE 2 and MasPar MP-1 show disparate SLALOM efficiency curves as a function of the problem size, but
nearly identical curves as a function of time. The superlinear effect has been shows for the CRAY Y-MP/8,
CRAY 2, nCUBE 2, Intel iPSC/860 and Touchstone Delta, MasPar MP-1, and Alliant FX/2800 [16].

8. Summary

The classic method of measuring performance for a fixed problem size has the advantage of basis on a
precise physical quantity, time. It has the disadvantage that it leads to distortion effects, since large amounts of
optimization create a mismatch between the problem and the hardware capacity. The fixed time method has the
disadvantage that it requires a definition of “work” for measurement of performance, but it removes the distor-
tion effects and allows comparison of very different computer systems. Unoptimized parts of a fixed time job
become a larger part of the total execution time as the problem size grows, but more gradually and more realisti-
cally than for the fixed size model. For most parallel complexity models, fixed time implies a limit to the perfor-
mance obtainable by using more processors, but this limit is more optimistic than the one claimed by Amdahl
and more realistic than the one claimed by scaling the storage.

Our approach to measuring work is to get a functional form for the time on one processor, and use
experimental measurements to determine the coefficients in the form. With the simplifying assumptions of flat
memory and related hardware scaling issues, work can be defined for ensembles built of that processor type.
Speedup becomes a function of both problem size and ensemble size. Fixed size, scaled, and fixed time models
are one-dimensional subsets of that space. The fixed time model, unlike its predecessor, does not reward slower
processors with higher speedup and efficiency in the canonical case that all the scalable work is parallel. For
similar reasons, the efficiency of the canonical case, written as a function of time instead of problem size, does
not depend on the number of processors or their speed.
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