
A LANGUAGE-INDEPENDENT SET OF
BENCHMARKS FOR PARALLEL PROCESSORS

John L. Gustafson and Stuart Hawkinson

Floating Point Systems, Inc.
September 9, 1986

Abstract

Benchmarks are essential for objective comparison of computer performance.
Established scientific computing benchmarks (LINPACK, Whetstones, Livermore

Kernels, etc.) are most appropriate for sequential machines running Fortran. As
architectures become increasingly parallel, these benchmarks are decreasingly

representative of the actual performance achievable on large-scale scientific applications.

We present a set of six benchmarks that are language-independent, representative of
mainstream scientific computing, and have parallel content approaching 100% as

parameters grow large. They are designed to fit a wide variety of multiprocessing
approaches. The memory, operation, and time complexity of each benchmark problem

are analyzed. We intend to promote collection and publication of performance figures for

a large set of both experimental and commercial computers, with strict controls to insure
integrity and verifiability of results.

Introduction

What makes a good benchmark? An examination of past benchmarks [6, 8, 11, 12]

suggests the following criteria:

1) It should be representative of actual applications.

2) It should not artificially exclude a particular architecture or configuration.
3) It should reduce to a single number to permit one-dimensional ranking.

4) It should be large enough to exercise features of large machines, and be scalable

to smaller and larger versions.
5) It should report enough details to be reproducible by an independent investigator.

6) It should permit simple verification of the correctness of results.
7) It should use algorithms simple enough to describe in about one page of text.

The ultimate goal of any benchmark is to estimate performance on an actual

application of interest. Hence, the benchmark should be designed so that its one-
dimensional ranking correlates well with a ranking of performance on the application.

While this sounds like a nearly impossible task, benchmarks of scalar scientific
computers have in fact historically been accepted as measures of application

performance.

The requirement that a benchmark run on a variety of architectures and configurations
has been neglected in many previous studies. The Whetstone benchmark [2], for

example, is specifically designed to defeat attempts to vectorize, parallelize, or pipeline

the code. Its operations are recursive, and hence measure only scalar performance. More
recently, D. H. Bailey and J. T. Barton [1] have attempted to rectify this situation. Their

NAS benchmarks provide seven Fortran kernels for vector uniprocessors and are
intended to measure current supercomputer performance. The philosophy, however, is

still one of minimum alteration to a specific Fortran formulation. Of the many parallel

research machines recently funded by DARPA, not one is capable of illustrating its
performance on the NAS benchmarks as stated. There obviously needs to be more

flexibility in implementation if a performance metric is to have staying power.
The requirement that the benchmark reduce to a single number is based on the

historical misuse of benchmarks. The Livermore Kernels [9] present an entire statistical

base of data, with 24 kernels run using three different mean vector lengths. Yet,
performance on those kernels is often stated as a single number, which might be the

harmonic mean or the arithmetic mean of various subsets of the data. It is clear that
computer performance is a multi-dimensional quantity, but in practice, the metric

inevitably becomes one-dimensional with repeated use. Even the Whetstone benchmark

was originally intended as a weighted mean of several operations, with different sets of

weights for different application mixes; yet the only numbers ever used are the default

weights suggested by Curnow and Wichmann [2].
It is better for a benchmark problem to be too large than too small. Ten years ago,

solving 100 equations in 100 unknowns with 14-decimal accuracy seemed like a
challenging computer task. On today’s supercomputers, such a problem uses less than 1%

of a machine’s main memory. The problem has vectors too short to effectively amortize

the cost of vector startup in the arithmetic pipelines. Since applications have grown with
the available hardware, such a small problem is no longer representative of large-scale

scientific computation. Fortunately, the problem is easily scaled, and solution times for
300-equation and 1000-equation systems are beginning to be quoted [3]. Dense systems

as large as 25000 by 25000 have been recently run as performance tests at Floating Point

Systems.
Benchmarks are experiments, subject to the same control requirements as any other

scientific experiment. A measurement of a computing system must be accompanied by

considerable supporting information, such as:

1) Numerical format used (mantissa size, exponent size)

2) Operating system release level
3) Language and release level; directives and options used

4) Memory size, cache, mass storage, and any other variable storage information

5) Number of processors, interprocessor communication speeds, processor clock
speeds, and any other physical variables of the configuration

6) Date run
7) Who performed the measurement, and how that person can be contacted

These requirements are a bare minimum for reproducibility in the experiment. It is

assumed that no other users are present on a computer system running a benchmark
problem, and that times quoted are always elapsed times rather than “CPU time” or other

subset of the computing resource. Perhaps the most important item in the above list is the
name of the person who performed the benchmark. Too often, published benchmarks use

anonymous sources, which reduces the traceability of the results. Ideally, results should

be gathered and maintained by an independent national agency; the National Bureau of

Standards has already expressed interest in taking on this responsibility [10]
The ease-of-verification requirement is obvious. If one does not require that programs

run correctly, then one can make them run very quickly indeed. We take the view that the
person who programs the benchmark for a particular machine is responsible for making

certain that the program actually does the stated job. While verification facilities can be

provided in the program, a person motivated to circumvent them will probably never
have the least bit of trouble doing so. Proof of correctness should be viewed similarly to

the requirement for correctness in published mathematical proofs; testing a theorem by
example might weed out an error, but can never prove correctness.

Finally, the algorithms describing the benchmark problems should be describable in

about one page of text. Benchmarks are often criticized as being too short to represent
very large application programs, and this is particularly valid if one is measuring a

machine with a program cache. The tradeoff is that long benchmarks are generally much

harder to convert to various machines, greatly reducing the eventual database of the
benchmark. John Swanson has collected a sizeable list of computer performance on his

ANSYS® structural analysis code (over 150,000 lines of Fortran), but only within the
realm of sequential Fortran processors. Swanson’s measurements are among the best,

however, for revealing overall system performance on a large Fortran program. In

general, however, a small set of short kernels can be representative of overall
performance in scientific applications; we make the tradeoff in the direction of simplicity

because of the desire for language independence.
An excellent example of a language-independent benchmark in wide use is the Fast

Fourier Transform. It is usually cited for either a 1024-point linear array, or the two-

dimensional transform of a 1024 by 1024-point array of complex numbers. Although it is
generally not specified whether the data is left bit-reversed or in correct order, the FFT

benchmark needs no statement about specific data, language, number of processors, etc.
The correctness of the program is easily checked by applying the inverse FFT and

comparing with the original data. It conveys speed on a problem of intense interest to

certain applications. This is the paradigm for our six benchmark problems.
We have selected six problems that represent a cross-section of scientific computing:

1) Matrix Multiplication

2) Wave Equation
3) Linear System Solution

4) Two-Dimensional Convolution
5) Two-Dimensional Discrete Fourier Transform

6) Three-Dimensional N-Body Simulation

As typified by the FFT, each benchmark is described as a mathematical task to be
performed, with plenty of freedom to allow a programmer to use a particular machine to

good advantage. For clarity, we supply a sample implementation in Fortran. The problem
is analyzed for memory complexity, operation complexity, time complexity, theoretical

maximum parallelism in the flow of data, what architectural features are being exercised,

and what applications correlate well with the problem.
Each Fortran listing is intended only as an explanation of the problem being solved,

not as a specification of the order of computations. The authors have little interest in

knowing how cleverly an optimizing Fortran compiler can reconstruct parallelism from
the serialized versions shown here. Data are generated with a system-supplied function

“RAN(ISEED)” which delivers a pseudo-random sequence of real values uniformly
distributed between 0 and 1. It may be assumed that the data do not produce underflow,

overflow, or division by zero. The Fortran examples use a system call “SECONDS(T1)”

which returns the absolute “wall clock” time in T1; this can then be used to compute
elapsed time.

Storage required, or “memory complexity,” is stated as an asymptotic term which
ignores lower-order terms and scratch usage. It also does not account for the possible

need for redundant storage on multiple processors.

“Operation complexity” refers to the total number of floating-point operations
required by the algorithm. “Time complexity” refers to the number of operations in the

critical path of the data dependency graph. Execution time on a serial computer will
depend mostly on operation complexity; execution time on a highly parallel computer

will depend mostly on time complexity. With the exception of the industry-standard 1K

by 1K FFT, the parameters have been chosen so that the benchmarks have operation

complexities of approximately one billion. We use the operation weighting suggested by

McMahon [9]:

Operation Complexity
Add, subtract, compare 1
Multiply 1

Reciprocal 3

Square root 4

“Maximum parallelism” describes the breadth of the data dependency graph, that is,

the maximum concurrency that can be exploited in the algorithm. The algorithms all have
maximum parallelism in excess of 106 using the suggested parameters, so that even

massively parallel designs will be able to demonstrate performance improvements.

BENCHMARKS

Implementation Notes:

All floating-point numbers are assumed to have a dynamic range of at least 10–300 to
10+300 and at least 15 decimal digits of mantissa precision. All computers with hardware

or software based on the IEEE proposed 64-bit floating-point standard meet this
requirement. A complex number consists of two such floating-point numbers and thus

requires at least 128 bits. A “word” is a unit of storage with at least 64 bits.

Timing begins when the first calculation is performed on input data (not parameters).
It ends when the last necessary calculation is finished. The data can be stored wherever

convenient before starting the timer (registers, caches, multiple local memories, etc.)

Timing should not include the time required to fill the arrays with starting data, even if
data is stored redundantly on multiple processors. The data may be stored in any regular

order required for maximum performance. Precomputing results or partial results is not
permitted unless specifically stated in the problem description.

The “single number” quoted for this suite of six benchmarks is the sum of the six

individual timings. Equivalently, one may compute total MFLOPS as the total number of
floating-point operations (operation complexity) divided by the total number of

microseconds of elapsed time, if care is taken to consider only those MFLOPS essential

to the computation. (A driver program is being developed to implement these guidelines
and execute the six benchmarks. It will produce a table of required information and a

summary of results.)

1) MATRIX MULTIPLICATION

Given N-by-N 64-bit floating-point matrices A and B, compute the matrix product

C = AB. All matrices are considered dense and asymmetric.

Sample parameter: N = 1024.

Fortran sample implementation:

C Problem 1: Matrix Multiplication JLG 3/14/86
C
 PARAMETER (N=1024)
 REAL A(N,N), B(N,N), C(N,N)
C
C Set up matrix data.
C
 ISEED = 31415
 DO 1 I = 1, N
 DO 1 J = 1, N
 A(I,J) = RAN(ISEED)
 1 B(I,J) = RAN(ISEED)
C
C Start timer and begin computation.
C
 CALL SECONDS(T1)
 DO 2 I = 1, N
 DO 2 J = 1, N
 SUM = A(I,1) * B(1,J)
 DO 3 K = 2, N
 3 SUM = SUM + A(I,K) * B(K,J)
 2 C(I,J) = SUM
C
C Finished; stop timer.
C
 CALL SECONDS(T2)
 WRITE(6,*) ' Elapsed time in seconds:', T2 - T1
 STOP
 END

Memory complexity: Approximately 2N 2 words (by replacing A or B with the result C).

(For N = 1024, this is 2.1 million words, or 17 million bytes).

Operation complexity: N 3 multiplications, N 3 – N 2 additions; 2N 3 – N 2 total floating-

point operations. (For N = 1024, this is 2.1464 billion floating-point operations.)

Time complexity: 1 multiplication and lg N additions (see Figure 1.) (For N = 1024, this

is 11 operations.)

Maximum parallelism: N 3 multiplications. (For N = 1024, this is 1.1 billion.)

Matrix multiplication should execute at very close to “peak theoretical speed” on

most scientific computers. The ratio of floating-point multiplications to additions is
nearly unity, which corresponds to a common design ratio of one adder functional unit to

every multiplier functional unit. This benchmark tests ability to use arithmetic units with
a minimum of communication overhead; each word of input data is used in N operations.

Systolic algorithms using a two-dimensional mesh of processors are well known [7]; the

diagram below suggests that logarithmic interconnectivity can further reduce execution
time.

Matrix multiplication is essential for similarity transformations and certain kinds of

eigenvalue-eigenvector computation. Computational chemistry depends heavily on
matrix multiplication for ab initio modeling of molecular behavior.

Figure 1. Parallel Matrix Multiplication

2) WAVE EQUATION

Simulate the wave equation on the interior of an N-by-N grid of points. Follow the

progress of the wave through T time steps.

Two time steps, U(i, j) and V(i, j), are initialized before timing starts. The boundaries
of the grids are initialized to zero, and are never updated. The interiors are initialized to

dense sets of floating-point numbers.

The simulation uses an explicit time stepping scheme:

U(i, j) ← [V(i + 1, j) + V(i – 1, j)

+ V(i, j + 1) + V(i, j – 1)] × 0.5 – U(i, j)

for 2 ≤ i, j ≤ N – 1, followed by

V(i, j) ← [U(i + 1, j) + U(i – 1, j)

+ U(i, j + 1) + U(i, j – 1)] × 0.5 – V(i, j)

for 2 ≤ i , j ≤ N – 1. Each update of U and then V counts as two time steps. Only the last

two time steps are to be saved.

Sample parameters: N=1024, T=250.

Fortran sample implementation:

C Problem 2: Wave Equation JLG 3/14/86
C
 PARAMETER (N = 1024, N2 = N/2, ITIME = 250)
 REAL U(N,N), V(N,N)
C
C Initialize the time steps.
C
 ISEED = 31415
 DO 1 I = 1, N
 DO 1 J = 1, N
 U(I,J) = RAN(ISEED)
 1 V(I,J) = RAN(ISEED)
 U(N2,N2) = 100.0
C
C Start the timer and begin computing.
C
 CALL SECONDS(T1)
 DO 2 NT = 1, ITIME - 1, 2
 DO 3 I = 2, N-1
 DO 3 J = 2, N-1
 U(I,J) = (V(I+1,J)+V(I-1,J)
 $ + V(I,J+1)+V(I,J-1))*0.5 - U(I,J)
 3 CONTINUE
 DO 4 I = 2, N-1
 DO 4 J = 2, N-1
 V(I,J) = (U(I+1,J)+U(I-1,J)
 $ + U(I,J+1)+U(I,J-1))*0.5 - V(I,J)
 4 CONTINUE
 2 CONTINUE
C
C Finished; stop timer.
C
 CALL SECONDS(T2)
 WRITE(6,*) ' Elapsed time in seconds:', T2 - T1
 STOP
 END

Memory complexity: Approximately 2N 2 words. (For N = 1024, this is 2.1 million
words, or 17 million bytes.)

Operation complexity: 4(N – 2)2T additions, (N – 2)2T multiplications; 5(N – 2)2T total

floating-point operations. [By re-using sums, the additions can be reduced to 3(N – 2)2T

at the expense of reducing the maximum parallelism somewhat. In this case, use

4(N –2)3T to compute MFLOPS ratings from this benchmark. (For N = 1024 and T = 250,
this is 1.0445 billion floating-point operations.)]

Time complexity: 3T additions and T multiplications. (See Figure 2). (For T = 250, this

is 1000 operations.)

Maximum parallelism: 2N2 additions at the beginning of every time step. (For

N = 1024, this is 2.1 million.)

This benchmark is memory/communication intensive, since each word of data

communicated between neighboring points only participates in a single calculation.

However, the method is highly parallel because of the explicit formulation, which can
exercise a large number of processors running similar programs.

The wave equation is one of the most important equations of mathematical physics. It

is used by the seismic industry to simulate various exploration strategies, sometimes
using formulations scarcely more complicated than the one used here. Fluids can be

modeled by similar methods when their behavior is wavelike (hyperbolic), such as in
transonic flow.

Figure 2. Parallel Wave Equation Simulation

3) LINEAR SYSTEM SOLUTION

Given an N-by-N floating-point matrix A and an N-long floating-point vector b, find
an N-long floating-point vector x such that Ax = b. All matrices and vectors are assumed

dense. The matrix A is real, asymmetric, and nonsingular.
Use any method with numerical error equal to or less than that of Gaussian

elimination with partial pivoting. For example, one might use LU factorization with

pivoting, then forward reduction, and then backsolving, or one might combine passes by
using Gauss-Jordan elimination with pivoting. Pivoting must be across all non-eliminated

columns, not just those local to a processor. A and b may be altered in the process of
solution; only x is required as output.

Sample parameters: N = 1023. (This allows the augmented matrix to have a width of

1024 elements.)

Fortran sample implementation:
C Problem 3: Linear System Solution JLG 1/27/86
C
 PARAMETER (N = 1023)
 REAL A(N,N+1), X(N), R(N)
 EQUIVALENCE (A(1,N+1), X(1))
C
C Set up matrix and vector data.
C
 ISEED = 31415
 DO 1 I = 1, N
 DO 1 J = 1, N + 1
 1 A(I,J) = RAN(ISEED)
C
C Start timer and begin computation.
C
 CALL SECONDS(T1)
 DO 2 K = 1, N - 1
 S = ABS(A(K,K))
 L = K
 DO 3 I = K + 1, N
 IF (S .GE. ABS(A(I,M))) GO TO 3
 S = ABS(A(I,M))
 L = I
 3 CONTINUE
 DO 4 I = K, N
 S = A(K,I)
 A(K,I) = A(L,I)
 4 A(L,I) = S
 R(K) = 1.0 / A(K,K)
 DO 5 I = K + 1, N
 S = A(I,K) * R(K)
 DO 5 J = K+1, N+1
 5 A(I,J) = A(I,J) - S * A(K,J)
 2 CONTINUE
 R(N) = 1.0 / R(N)
C
C Backsolve...
C
 X(N) = X(N) * R(N)
 DO 6 I = N - 1, 1, -1
 DO 7 J = I + 1, N
 7 X(I) = X(I) - X(J) * A(I,J)
 6 X(I) = X(I) * R(I)
C
C Finished; stop timer.
C
 CALL SECONDS(T2)
 WRITE(6,*) ' Elapsed time in seconds:', T2 - T1
 STOP
 END

Memory complexity: N2 words. (For N = 1023, this is 1 million words, or 8.4 million
bytes.)

Operation complexity: 1⁄3N 3 + N 2 – 1⁄3N additions (including comparison operations),
1⁄3N 3 + N 2 – 1⁄3N multiplications, and N reciprocals; 2⁄3 N 3 + 2N 2 + 7⁄3 N total floating-

point operations. (For N = 1023, this is 0.7158 billion floating-point operations.)

Time complexity: (lg N)(N+1) + 2N – 1 additions, 3N – 1 multiplications, and N

reciprocals. (For N = 1023, time complexity is about 20000.)

Maximum parallelism: (N – 1)2 multiplications and additions after the first pivot

element is found. (For N = 1023, this is about 1 million.)

Linear equations solving has a kernel that resembles matrix multiplication; however,
the need to choose a pivot value introduces a major change for parallel computation.

There is much more time complexity in Gaussian Elimination than in matrix
multiplication, although each word of data participates in roughly the same number of

calculations. The backsolving step tends to be communication-bound.

Direct solvers are essential in several applications. Structural analysis uses direct
solution on matrices with envelope sparsity; within the envelope, the operation resembles

the problem described above. Integral formulations of boundary value problems (such as

those used for determining radar cross-section) require direct solution of dense systems.
In general, implicit formulations of physical problems result in a need to solve systems of

simultaneous equations.

Figure 3. Parallel Gaussian Elimination

4) TWO-DIMENSIONAL CONVOLUTION

Given an image A and an M-by-M filter F , compute an N-by-N array B , the
convolution of A with F. Compute only that subset such that the filter does not extend

beyond the edge of the image; hence A must have dimensions N + M – 1 by N + M – 1.

The convolution is defined as

€

B i − M , j − M() = A i −m, j − n()F m,n()
n=1

M

∑
m=1

M

∑

for i, j = M + 1 to N + M. Only B needs to be saved.

Sample parameters: N = 1024, M = 25.

Fortran sample implementation:
C Problem 4: Two-Dimensional Convolution JLG 3/14/86
C
 PARAMETER (N = 1024, M = 25)
 DIMENSION A(N+M-1,N+M-1), B(N,N), F(M,M)
C
C Set up image and filter data.
C
 ISEED = 31415
 DO 1 I = 1, N+M-1
 DO 1 J = 1, N+M-1
 1 A(I,J) = RAN(ISEED)
 DO 2 I = 1, M
 DO 2 J = 1, M
 2 F(I,J) = RAN(ISEED)
C
C Start timer and begin computation.
C
 CALL SECONDS(T1)
 DO 3 I = M + 1, N + M
 DO 3 J = M + 1, N + M
 SUM = 0.0
 DO 4 K = 1, M
 DO 4 L = 1, M
 4 SUM = SUM + A(I-K,J-L) * F(K,L)
 3 B(I-M,J-M) = SUM
C
C Finished; stop timer.
C
 CALL SECONDS(T2)
 WRITE(6,*) ' Elapsed time in seconds:', T2 - T1
 END

Memory complexity: Approximately 2N 2 words. (For N = 1024, this is 2.1 million

words, or 16.8 million bytes.)

Operation complexity: N 2(M 2 – 1) additions and N 2M 2 multiplications; N 2(2M 2 – 1)

total floating-point operations. (For N = 1024 and M = 25, this is 1.3097 billion

operations.)

Time complexity: 2 lg M additions and 1 multiplication. (See Figure 4.) (For M = 25,

this is 11 operations)

Maximum parallelism: N 2M 2 multiplications in the first step. (For N = 1024 and

M = 25, this is 655 million.)

This function differs from matrix multiplication in its pattern of re-use of data. The

filter data is re-used intensively and can be broadcast for effective parallelization.

Convolution is the most important time-domain operation in signal and image
processing. When filters become larger than about 64 elements in any dimension, FFT

methods are more efficient. Convolution strongly resembles the fundamental operation of
finite-difference iterative methods, applying an inner-product operator to a local subset of

the data to “relax” toward a solution. Hence, performance on this benchmark should

correlate strongly with performance on certain partial differential equation methods.

Figure 4. Parallel Two-Dimensional Convolution

5) TWO-DIMENSIONAL DISCRETE FOURIER TRANSFORM

Given an N-by-N image A consisting of complex pairs of floating-point numbers,

compute its two-dimensional Discrete Fourier Transform B, followed by its scaled
inverse C, which should reproduce the original image A. The transform is defined as

€

B k ,l() = A m,n()ω kmω nl

n=1

N −1

∑
m=0

N −1

∑

for k, l = 0, … , N – 1; its inverse is defined as

€

C k ,l() =
1

N 2
B m,n()ω−kmω−nl

n=1

N −1

∑
m=0

N −1

∑

for m, n = 0, …, N – 1, where ω = e –2πi ⁄ N.

FFT methods may be used, either in-place or out-of-place. Only C must be saved;
timing ends when it is stored in the original order used to store A. Do not include time to

prepare sine and cosine tables.

Sample Parameter: N = 1024

Fortran sample implementation (see [1]):

C Problem 5: Two-Dimensional Discrete Fourier Transform
C (using radix 2 FFT methods) JLG 1/26/86
C
 PARAMETER (N = 1024, N2 = N/2)
 COMPLEX A(N,N), W(N)
 INTEGER IP(2,N)
C
C Initialize trig tables and input data.
C
 ISEED = 31415
 DO 1 I = 1, N2
 T = 2. * 3.141592653589793 * (I-1) / N
 1 W(I) = CMPLX(COS(T), SIN(T))
 DO 2 I = 1, N
 DO 2 J = 1, N
 2 A(I,J) = RAN(ISEED)
 SCALE = 1. / FLOAT(N * N)
C
C Start timer and begin computation.
C
 CALL SECONDS(T1)

 CALL FFT(A,N,W,IP,+1)
 CALL TRANS(A,N)
 CALL FFT(A,N,W,IP,+1)
 DO 3 I = 1, N
 DO 3 J = 1, N
 3 A(I,J) = A(I,J) * SCALE
 CALL FFT(A,N,W,IP,-1)
 CALL TRANS(A,N)
 CALL FFT(A,N,W,IP,-1)
C
C Finished; stop timer.
C
 CALL SECONDS(T2)
 WRITE(6,*) ' Elapsed time in seconds:', T2 - T1
 STOP
 END
C
C Compute 1D FFTs (based on routine by D.H. Bailey):
C
 SUBROUTINE FFT(A,N,W,IP,IFLAG)
 COMPLEX A(N,N), W(N), CX, CT
 INTEGER IP(2,N)
 DO 4 I = 1, N
 4 IP(1,I) = I
 L = 1
 K1 = 1
 5 K2 = 3 - K1
 N2 = N/2
 DO 6 J = L, N2, L
 CX = W(J-L+1)
 IF (IFLAG .LT. 0) CX = CONJG(CX)
 DO 6 I = J-L+1, J
 II = IP(K1,I)
 IP(K2,I+J-L) = II
 IM = IP(K1,I+N2)
 IP(K2,I+J) = IM
 DO 6 K = 1, N
 CT = A(II,K) - A(IM,K)
 A(II,K) = A(II,K) + A(IM,K)
 6 A(IM,K) = CT * CX
 L = 2 * L
 K1 = K2
 IF (L .LE. N2) GO TO 5
 DO 7 I = 1, N
 II = IP(K1,I)
 IF (II .LE. I) GO TO 7
 DO 8 K = 1, N
 CT = A(I,K)
 A(I,K) = A(II,K)
8 A(II,K) = CT
7 CONTINUE
 RETURN
 END
C
C Transpose complex array in place.
C
 SUBROUTINE TRANS(A,N)
 COMPLEX A(N,N), CT

 DO 9 I = 1, N - 1
 DO 9 J = I + 1, N
 CT = A(I,J)
 A(I,J) = A(J,I)
 9 A(J,I) = CT
 RETURN
 END

Memory complexity: Approximately 2N 2. (For N = 1024, this is about 2.1 million

words, or 16.8 million bytes.)

Operation complexity: If radix 2 FFT methods are used, there are 12 N 2 lg N additions

and N 2(8 lg N + 2) multiplications; N 2(20 lg N + 2) total floating-point operations. This is
not the theoretical minimum number of operations; however, use N 2(20 lg N + 2) to

compute MFLOPS ratings for this benchmark. (For N = 1024, this is 0.2118 billion

floating-point operations).

Time complexity: 4 lg N + 1 multiplications and 8 lg N additions, for the radix 2 FFT.

(For N = 1024, this is 121 operations).

Maximum parallelism: 8N 2 multiplications in the beginning of each radix 2 FFT. (For

N=1024, this is 8.4 million.)

A number of multiprocessor connection schemes are appropriate for the FFT:
hypercube, omega network, and butterfly, for example. Nearest-neighbor schemes in two

or three dimensions do not have adequate direct interconnects for most factorings of the

Discrete Fourier Transform.
Besides the obvious importance of discrete Fourier Transforms in signal and image

processing performing convolutions or extracting frequency spectra, they are essential for
spectral methods used in mathematical physics. Computational fluid dynamics, notably

weather modeling, sometimes uses FFTs to convert space-domain problems into more

easily solved frequency-domain problems.

Figure 5. Parallel Two-Dimensional FFT

6) THREE-DIMENSIONAL N-BODY SIMULATION

Simulate the time evolution of a system of N point masses with Newtonian

gravitational forces in three spatial dimensions; that is, the force between any two bodies
mi and mj is described by

Fij = –Gmimj rij ⁄ || rij ||3

where G is the gravitational constant and rij is the vector from mass i to mass j. For

simplicity, we assume that G = 1 and mi = 1 for i = 1, … , N. Hence the total force on

body mi is

€

Fi = −
rij

rij
3

i≠ j

N

∑

Assume an initial set of nonzero velocities vi. Use a simple time stepping method [4] to

update velocities and positions, with T time steps of size h. Compute Fi for i = 1, … , N.
Then new velocities vi′ and ri′ are obtained from vi and ri using

vi′ = vi + h Fi

ri′ = ri + h vi′

for i = 1, … , N. Repeat for T time steps. Note that cluster approximations, which replace

groups of particles with a point mass, are not permitted.

Sample parameters: N = 1024, T = 50, h = 0.0001

Fortran sample implementation:

C Problem 6: N-Body Simulation JLG 3/14/86
C
 PARAMETER (N = 1024, ITIME = 50, H = 0.0001)
 DIMENSION R(N,3),R1(N,3),V(N,3),V1(N,3),FORCE(3),DEL(3)
C
C Set up initial positions and velocities.
C
 ISEED = 31415
 DO 1 I = 1, N
 DO 1 J = 1, 3
 R(I,J) = RAN(ISEED)
 1 V(I,J) = RAN(ISEED)
C
C Start timer and begin computation.
C
 CALL SECONDS(T1)
 DO 2 NT = 1, ITIME
 DO 3 I = 1, N
 DO 4 IDIM = 1, 3
 4 FORCE(IDIM) = 0.0
 DO 5 J = 1, N
 IF (I .EQ. J) GO TO 5
 DO 6 IDIM = 1,3
 6 DEL(IDIM) = R(I,IDIM) - R(J,IDIM)
 RIJ = DEL(1)**2 + DEL(2)**2 + DEL(3)**2
 RIJ = 1. / (RIJ * SQRT(RIJ))
 DO 5 IDIM = 1, 3
 FORCE(IDIM)=FORCE(IDIM)+DEL(IDIM)* RIJ
 5 CONTINUE
 DO 7 IDIM = 1, 3
 V1(I,IDIM) = V(I,IDIM) + FORCE(IDIM) * H
 7 R1(I,IDIM) = R(I,IDIM) + V1(I,IDIM) * H

 3 CONTINUE
 DO 8 I = 1, N
 DO 8 IDIM = 1, 3
 V(I,IDIM) = V1(I,IDIM)
 8 R(I,IDIM) = R1(I,IDIM)
 2 CONTINUE
C
C Finished; stop timer.
C
 CALL SECONDS(T2)
 WRITE(6,*) ' Elapsed time in seconds:', T2 - T1
 END

Memory complexity: 12N words. (For N = 1024, this is 12 Kwords, or 100 Kbytes).

Operation complexity: (8N 2 – 2N)T additions, (7N 2 – N)T multiplications, (N 2 – N)T
square roots, and (N 2 – N)T reciprocal operations; (22N 2 – 10N)T total floating-point

operations. (For N = 1024 and T = 50, this is 1.1538 billion operations.)

Time complexity: 6T additions, 5T multiplications, T square roots, and T reciprocals.

(For T = 50, this is 90 operations.)

Maximum Parallelism: 3(N 2 – N) additions at the beginning of each time step. (For
N = 1024, this is 3.1 million.)

A discussion of this problem and its fit to parallel architectures can be found in [5]. In
general, ring interconnectivity is sufficient to achieve high parallel performance, despite

the apparently high everything-to-everything costs. Plasma simulation and astrophysical

simulations illustrate the range of applicability of such algorithms.

Figure 6. Parallel N -Body Simulation

SUMMARY

The suite of six benchmarks presented in this paper is designed to measure the
performance of parallel scientific computers. They are sufficiently general to permit

various architectures to achieve a high percentage of their optimum performance. No

artificial restrictions have been placed on language, evaluation order, or parallelism. The
Fortran listings are meant only to clarify the computations required and serve as an

independent source of results for testing. The size of each benchmark has been adjusted
so that each kernel makes a significant contribution to the total execution time.

The following table summarizes the six benchmarks for the sample parameters:

Benchmark Memory, Billions of Minimum Max. Parallelism,
Megabytes Operations Time Millions

Matrix Multiplication 17. 2.1464 11 1074.

Wave Equation 17. 1.0445 1000 2.1

Linear Equations 8.4 0.7158 20000 1.

Convolution 17. 1.3097 11 655.

2D Fourier Transform 17. 0.2118 121 8.4

N-Body Simulation 0.1 1.1538 90 3.1

The guidelines presented should allow the reported benchmark results to be analyzed,

understood, and repeated. It is hoped that these kernel computations will be run on many
new parallel architectures regardless of language, task granularity, or memory

organization. The authors would appreciate reports of any results and will promote their
discussion to as wide an audience as possible.

REFERENCES

[1] Bailey, D. H., and Barton, J. T., “The NAS Kernel Benchmark Program,” NASA

Technical Memorandum 86711, (August 1985).

[2] Curnow, H. J., and Wichmann, B. A., “A Synthetic Benchmark,” Computer Journal,

19, 1, (February 1976).

[3] Dongarra, J. J., “Performance of Various Computers Using Standard Linear
Equations Software in a Fortran Environment,” ANL Technical Memorandum 23,

(November 1985).

[4] Feynman, R.P., The Feynman Lectures on Physics, Vol. I, Addison Wesley, (1964),

9–5 to 9–9.

[5] Fox, G. C., and Otto, S. W., “Algorithms for Concurrent Processors,” Physics Today,
(May 1984), 50–59.

[6] Gustafson, J. L., “Measuring MFLOPS,” Floating Point Systems Application Note

#52, (June 1985).

[7] Kung, H.T., “Why Systolic Architectures,” IEEE Computer, 15, 1, (January 1982),

37–46.

[8] Marvit, P., and Nair, M, “Benchmark Confessions,” BYTE, 9, 2, (February 1984),

227–230.

[9] McMahon, F. H., “L.L.N.L FORTRAN KERNELS: MFLOPS,” Lawrence

Livermore National Laboratory, (benchmark tape available), (1983).

[10] National Bureau of Standards Announcement, “NBS Parallel Computer Benchmark
Collection,” J. Comp. Physics, 61, (1985), 523.

[11] Purdom, J., “Benchmark Philosophy and Methodology,” Computer Language, 3, 2,

(February, 1986), 49–56.
[12] Worlton, J., “Understanding Supercomputer Benchmarks,” Datamation, (September

1, 1984), 121–130.

